Patents by Inventor Axel Franke

Axel Franke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140110800
    Abstract: A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner
  • Patent number: 8695427
    Abstract: A micromechanical component is described including a substrate having a spacer layer and a test structure for ascertaining the thickness of the spacer layer. The test structure includes a seismic mass, which is elastically deflectable along a measuring axis parallel to the substrate, a first electrode system and a second electrode system for deflecting the seismic mass along the measuring axis, having a mass electrode, which is produced by a part of the seismic mass, and a substrate electrode, which is situated on the substrate in each case, the first electrode system being designed to be thicker than the second electrode system by the layer thickness of the spacer layer.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Reinmuth, Ralf Boessendoerfer, Axel Franke, Mirko Hattass
  • Publication number: 20130327163
    Abstract: A microelectromechanical sensor module includes a sensing mechanism for measuring an acceleration, pressure, air humidity or the like, a control mechanism for controlling the sensing mechanism, an energy supply mechanism for supplying the sensor module with energy, and a transmission mechanism for transmitting signals of the sensing mechanism. At least three of the mechanisms are integrated at the chip level in at least one chip in each case. A corresponding method is implemented to produce the microelectromechanical sensor module.
    Type: Application
    Filed: October 14, 2011
    Publication date: December 12, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Thomas Wagner, Ando Feyh, Georg Bischopink, Axel Franke
  • Publication number: 20130327147
    Abstract: A micromechanical device measures an acceleration, a pressure or the like. It comprises a substrate having at least one fixed electrode, a seismic mass moveably arranged on the substrate, at least one ground electrode, which is arranged on the seismic mass, and resetting means for returning the seismic mass into an initial position, wherein the fixed electrode and the ground electrode are configured in one measurement plane for measuring an acceleration, a pressure or the like in the measurement plane, and wherein the fixed electrode and the ground electrode are configured for measuring an acceleration, pressure or the like acting on the seismic mass perpendicular to the measurement plane. The disclosure likewise relates to a corresponding method and a corresponding use.
    Type: Application
    Filed: September 19, 2011
    Publication date: December 12, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Christina Leinenbach, Axel Franke, Gary O'Brien
  • Publication number: 20130299927
    Abstract: Measures are proposed by which the design freedom is significantly increased in the case of the implementation of the micromechanical structure of the MEMS element of a component, which includes a carrier for the MEMS element and a cap for the micromechanical structure of the MEMS element, the MEMS element being mounted on the carrier via a standoff structure. The MEMS element is implemented in a layered structure, and the micromechanical structure of the MEMS element extends over at least two functional layers of this layered structure, which are separated from one another by at least one intermediate layer.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Axel Franke, Patrick Wellner, Lars Tebje
  • Patent number: 8566057
    Abstract: A method for self-adjustment of a triaxial acceleration sensor during operation includes: calibrating the sensor; checking the self-adjustment for an interfering acceleration, with the aid of a measurement equation and estimated values for sensitivity and offset; repeating the adjustment if an interfering acceleration is recognized; and accepting the estimated values for sensitivity and offset as calibration values if an interfering acceleration is not recognized. The step of checking the self-adjustment includes: estimating sensitivity and/or offset and the variance thereof; determining an innovation as the difference between a measured value of the measurement equation and an estimated value of the measurement equation; testing the innovation for a normal distribution; and recognizing the interfering acceleration in the event of a deviation from the normal distribution.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: October 22, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Axel Franke, Alexander Buhmann
  • Patent number: 8520396
    Abstract: A method for producing an electronic module, in that at least one first microelectronic component is provided and is electrically connected to a second microelectronic component by a first flip-chip method step; at least one dielectric component is provided which has at least one printed circuit trace, and at least one printed circuit trace of the dielectric component is electrically connected to the second microelectronic component; and the second microelectronic component is electrically connected by a second flip-chip method step to a printed circuit board by way of the printed circuit trace(s) of the dielectric component, in order to avoid vias through a microelectronic component; the invention also relates to a corresponding electronic module.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 27, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Manuela Schmidt, Axel Franke, Sven Zinober
  • Patent number: 8493078
    Abstract: A sensor for capacitive detection of a mechanical deflection includes a substrate having a first substrate electrode and a second substrate electrode; and a mass movable relative to the substrate. The mass is divided into: a first electrically separate region having a first ground electrode; and a second electrically separate region of the mass having a second ground electrode. At least one portion of the first ground electrode is situated in a first region between the first substrate electrode and the second substrate electrode, and forms a first differential capacitor. At least one portion of the second ground electrode is situated in a second region between the first substrate electrode and the second substrate electrode, and forms a second differential capacitor.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Axel Franke, Alexander Buhmann, Marian Keck
  • Patent number: 8492188
    Abstract: A method for producing a micromechanical component is described. The method includes providing a substrate having a layer system including an insulating material situated on the substrate, a conductive layer section and a protective layer structure connected to the conductive layer section, which borders a section of the insulating material. The method furthermore includes carrying out an isotropic etching process for removing a part of the insulating material, the conductive layer section and the protective layer structure preventing the removal of the bordered section of the insulating material; and a structural element being developed, which includes the conductive layer section, the protective layer structure and the bordered section of the insulating material.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Heiko Stahl, Christina Leinenbach, Axel Franke, Jochen Reinmuth, Ando Feyh, Christian Rettig
  • Patent number: 8461833
    Abstract: A method for determining the sensitivity of a sensor provides the following steps: a) first and second deflection voltages are applied to first and second electrode systems of the sensor, respectively, and first and second electrostatic forces are exerted on an elastically suspended seismic mass of the sensor by the first and second electrode systems, respectively, and a restoring force is exerted on the mass as a result of the elasticity of the mass, and a force equilibrium is established among the first and second electrostatic forces and the restoring force, and the mass assumes a deflection position characteristic of the force equilibrium, and an output signal characteristic of the force equilibrium and of the deflection position is measured; and b) the sensitivity of the sensor is computed on the basis of the first and second deflection voltages.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: June 11, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Arnd Kaelberer, Hans-Joerg Faisst, Axel Franke, Mirko Hattass, Holger Rank, Robert Sattler, Alexander Buhmann, Ramona Maas, Marian Keck
  • Patent number: 8429971
    Abstract: A micromechanical acceleration sensor includes a substrate, an elastic diaphragm which extends parallel to the substrate plane and which is partially connected to the substrate, and which has a surface region which may be deflected perpendicular to the substrate plane, and a seismic mass whose center of gravity is situated outside the plane of the elastic diaphragm. The seismic mass extends at a distance over substrate regions which are situated outside the region of the elastic diaphragm and which include a system composed of multiple electrodes, each of which together with oppositely situated regions of the seismic mass forms a capacitor in a circuit. In its central region the seismic mass is attached to the elastic diaphragm in the surface region of the elastic diaphragm which may be deflected perpendicular to the substrate plane.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 30, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Axel Franke, Dietrich Schubert, Kersten Kehr, Ralf Reichenbach
  • Patent number: 8427031
    Abstract: A drive element is provided having a substrate, a seismic mass, a drive electrode and a counter-electrode, one of the two electrodes being connected to the substrate and the other of the two electrodes being connected to the seismic mass; and the drive electrode and the counter-electrodes being provided for the excitation of motion of the seismic mass in a main direction of motion; and in addition, the drive electrode includes a first and a second partial electrode, which are switchable separately from each other.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 23, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Axel Franke
  • Patent number: 8418556
    Abstract: A micro electrical-mechanical system (MEMS) is disclosed. The MEMS includes a substrate, a first pivot extending upwardly from the substrate, a first lever arm with a first longitudinal axis extending above the substrate and pivotably mounted to the first pivot for pivoting about a first pivot axis, a first capacitor layer formed on the substrate at a location beneath a first capacitor portion of the first lever arm, a second capacitor layer formed on the substrate at a location beneath a second capacitor portion of the first lever arm, wherein the first pivot supports the first lever arm at a location between the first capacitor portion and the second capacitor portion along the first longitudinal axis, and a first conductor member extending across the first longitudinal axis and spaced apart from the first pivot axis.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Po-Jui Chen, Martin Eckardt, Axel Franke
  • Patent number: 8381570
    Abstract: A method for adjusting an acceleration sensor which includes a substrate and a seismic mass, the acceleration sensor having first and further first electrodes attached to the substrate on a first side, counter-electrodes of the seismic mass being situated between the first and further first electrodes, the acceleration sensor having further second electrodes on a second side and further fourth electrodes on a fourth side opposite the second side, an essentially equal first excitation voltage being applied to the first and further first electrodes in a first step for exciting a first deflection of the seismic mass along a first direction, the first deflection being compensated in a second step by applying a first compensation voltage to the further second and further fourth electrodes.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 26, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Ohms, Axel Franke
  • Patent number: 8353213
    Abstract: A sensor element is provided for sensing accelerations in three spatial directions, which furnishes reliable measurement results and moreover can be implemented economically and with a small configuration. The sensor element encompasses at least one seismic mass deflectable in three spatial directions, a diaphragm structure that functions as a suspension mount for the seismic mass, and at least one stationary counterelectrode for capacitive sensing of the deflections of the diaphragm structure. According to the exemplary embodiments and/or exemplary methods of the present invention, the diaphragm structure encompasses at least four electrode regions, electrically separated from one another, that are mechanically coupled via the seismic mass.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 15, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Axel Franke, Kathrin Van Teeffelen, Christina Leinenbach
  • Publication number: 20120291543
    Abstract: A microsystem, e.g., a micromechanical sensor, has a first cavity which is sealed off from the surroundings and a second cavity which is sealed off from the surroundings. The first cavity is bounded by a first bond joint and the second cavity is bounded by a second bond joint. Either the first bond joint or the second bond joint is a eutectic bond joint or a diffusion-soldered joint.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Inventors: Christian RETTIG, Axel Franke, Ando Feyh
  • Patent number: 8286854
    Abstract: A microsystem has a first cavity which is sealed off from the surroundings and a second cavity which is sealed off from the surroundings. The first cavity is bounded by a first bond joint and the second cavity is bounded by a second bond joint. Either the first bond joint or the second bond joint is a eutectic bond joint or a diffusion-soldered joint.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: October 16, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Christian Rettig, Axel Franke, Ando Feyh
  • Publication number: 20120187509
    Abstract: A contact arrangement for establishing a spaced, electrically conducting connection between a first wafer and a second wafer includes an electrical connection contact, a passivation layer on the electrical connection contact, and a dielectric spacer layer arranged on the passivation layer, wherein the contact arrangement is arranged at least on one of the first wafer and the second wafer, wherein the contact arrangement comprises trenches at least partly filled with a first material capable of forming a metal-metal connection, wherein the trenches are continuous trenches from the dielectric spacer layer through the passivation layer as far as the electrical connection contact, and wherein the first material is arranged in the trenches from the electrical connection contact as far as the upper edge of the trenches.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 26, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Knut Gottfried, Maik Wiemer, Axel Franke, Achim Trautmann, Ando Feyh, Sonja Knies, Joerg Froemel
  • Publication number: 20120129291
    Abstract: A method for producing a micromechanical component is described. The method includes providing a substrate having a layer system including an insulating material situated on the substrate, a conductive layer section and a protective layer structure connected to the conductive layer section, which borders a section of the insulating material. The method furthermore includes carrying out an isotropic etching process for removing a part of the insulating material, the conductive layer section and the protective layer structure preventing the removal of the bordered section of the insulating material; and a structural element being developed, which includes the conductive layer section, the protective layer structure and the bordered section of the insulating material.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Inventors: Heiko Stahl, Christina Leinenbach, Axel Franke, Jochen Reinmuth, Ando Feyh, Christian Rettig
  • Publication number: 20120104978
    Abstract: A device is provided for resonantly driving a micromechanical system, which includes at least one seismic mass supported by spring vibrations, at least one drive for driving the vibration of the seismic mass and at least one element that is motionally coupled to the seismic mass. Furthermore, the device includes at least one detection element for detecting a relational parameter, that changes with the vibration of the seismic mass, between the motionally coupled element and the detection element, the detection element being equipped to cause an interruption of the vibration drive when a predetermined value of the relational parameter is reached.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 3, 2012
    Inventors: Axel Franke, Frank Freund, Daniel Christoph Meisel