Patents by Inventor Benedict Yorke Johnson

Benedict Yorke Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795116
    Abstract: Ceramic assembly can comprise a ceramic article comprising a thickness defined between a first major surface and a second major surface. The thickness can be about 100 micrometers or less. The ceramic assembly can comprise a polymer coating deposited over at least an outer peripheral portion of the first major surface of the ceramic article. The polymer coating can comprise a thickness of about 30 micrometers or less. An edge strength of the ceramic assembly can be greater than an edge strength of the ceramic article by about 50 MegaPascals or more. Methods of forming a ceramic assembly can comprise depositing a polymer coating on an outer peripheral portion of a first major surface of a ceramic article. Methods can further comprise curing the polymer coating.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: October 24, 2023
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, Francis Martin Behan, Seo-Yeong Cho, Benedict Yorke Johnson, Thomas Dale Ketcham, Robert George Manley, Seongho Seok, Nikolay Zhelev Zhelev, Cheng-Gang Zhuang
  • Publication number: 20220331851
    Abstract: A method of increasing the lubricity of an extrusion component, the method comprising: functionalizing a surface of a wall of an extrusion body with PDA material to form a PDA treated surface; coating the PDA treated surface with a lubricious material; and heat treating the wall of the extrusion body for a time and a temperature sufficient to cause the lubricious material to adhere to the PDA material, and for the PDA material to adhere to the wall; wherein the surface of the wall is optionally oxidized prior to the functionalizing. Also an extrusion component comprising: an extrusion body comprising an inlet face and an outlet face, the body comprising a base structure comprising an internal wall defining at least a portion of an extrusion pathway from the inlet face to the outlet face, wherein at least part of the internal wall comprises a lubricious coating that defines at least part of the extrusion pathway.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Inventors: Benedict Yorke Johnson, Angela Marie Vaughn
  • Publication number: 20210047236
    Abstract: An article is described herein that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; at least one of an optical film and a scratch-resistant film disposed over the primary surface; and an easy-to-clean (ETC) coating comprising a fluorinated material that is disposed over an outer surface of the at least one of an optical film and a scratch-resistant film. The at least one of an optical film and a scratch-resistant film comprises an average hardness of 10 GPa or more. Further, the outer surface of the at least one of an optical film and a scratch-resistant film comprises a surface roughness (Rq) of less than 1.0 nm.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventors: Kaveh Adib, Robert Alan Bellman, Yuhui Jin, Benedict Yorke Johnson, Timothy Edward Myers, Eric Louis Null, Charles Andrew Paulson, James Joseph Price, Florence Christine Monique Verrier
  • Publication number: 20210047243
    Abstract: Ceramic assembly can comprise a ceramic article comprising a thickness defined between a first major surface and a second major surface. The thickness can be about 100 micrometers or less. The ceramic assembly can comprise a polymer coating deposited over at least an outer peripheral portion of the first major surface of the ceramic article. The polymer coating can comprise a thickness of about 30 micrometers or less. An edge strength of the ceramic assembly can be greater than an edge strength of the ceramic article by about 50 MegaPascals or more. Methods of forming a ceramic assembly can comprise depositing a polymer coating on an outer peripheral portion of a first major surface of a ceramic article. Methods can further comprise curing the polymer coating.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 18, 2021
    Inventors: Michael Edward Badding, Francis Martin Behan, Seo-Yeong Cho, Benedict Yorke Johnson, Thomas Dale Ketcham, Robert George Manley, Seongho Seok, Nikolay Zhelev Zhelev, Cheng-Gang Zhuang
  • Patent number: 10822271
    Abstract: An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; at least one of an optical film and a scratch-resistant film disposed over the primary surface; and an easy-to-clean (ETC) coating comprising a fluorinated material that is disposed over an outer surface of the at least one of an optical film and a scratch-resistant film. The at least one of an optical film and a scratch-resistant film comprises an average hardness of 12 GPa or more. Further, the outer surface of the at least one of an optical film and a scratch-resistant film comprises a surface roughness (Rq) of less than 1.0 nm. Further, the at least one of an optical film and a scratch-resistant film comprises a total thickness of about 500 nm or more.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: November 3, 2020
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Robert Alan Bellman, Yuhui Jin, Benedict Yorke Johnson, Timothy Edward Myers, Eric Louis Null, Jung-keun Oh, Charles Andrew Paulson, James Joseph Price, Florence Christine Monique Verrier, Jin-ah Yoo
  • Patent number: 10737476
    Abstract: Disclosed herein are methods for transferring a graphene film onto a substrate, the methods comprising applying a polymer layer to a first surface of a graphene film, wherein a second surface of the graphene film is in contact with a growth substrate; applying a thermal release polymer layer to the polymer layer; removing the growth substrate to form a transfer substrate comprising an exposed graphene surface; and contacting the exposed graphene surface with a target substrate. Transfer substrates comprising a graphene film, a thermal release polymer layer, and a polymer layer are also disclosed herein.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: August 11, 2020
    Assignee: Corning Incorporated
    Inventors: Benedict Yorke Johnson, Xinyuan Liu, Prantik Mazumder
  • Patent number: 10610827
    Abstract: A substrate including a conversion catalyst for removing a volatile organic compound from ambient air. The substrate includes at least one porous wall. The conversion catalyst is within the pores of the at least one substrate porous wall.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Francis Martin Behan, Amit Halder, Benedict Yorke Johnson, Edward Zhmayev
  • Publication number: 20190314760
    Abstract: A substrate including a conversion catalyst for removing a volatile organic compound from ambient air. The substrate includes at least one porous wall. The conversion catalyst is within the pores of the at least one substrate porous wall.
    Type: Application
    Filed: October 20, 2017
    Publication date: October 17, 2019
    Inventors: Francis Martin Behan, Amit Halder, Benedict Yorke Johnson, Edward Zhmayev
  • Patent number: 10413948
    Abstract: An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; and an easy-to-clean (ETC) coating disposed over the primary surface, the coating comprising a bound ETC component and a mobile ETC component. Further, the bound ETC component comprises a perfluoropolyether (PFPE) silane. In addition, the mobile ETC component is disposed on or within the bound ETC component and comprises a fluorinated material, the mobile ETC component configured for movement relative to the bound ETC component.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 17, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Benedict Yorke Johnson, Carlo Anthony Kosik Williams, Eric Louis Null
  • Publication number: 20190275496
    Abstract: A method of making an activated carbon honeycomb filter article, as defined herein, including: extruding a batch mixture to form an extruded honeycomb body, the batch including: an activated carbon powder; a first organic binder powder; a rheological plasticizing liquid; a porous inorganic binder powder; an extrusion aid; and water by superaddition, drying the extruded honeycomb body; and heat treating the dried honeycomb body. Also disclosed is an honeycomb filter article, having: an activated carbon; a porous inorganic binder powder; a BET surface area of from 950 m2/g to 1600 m2/g; a cell density of from 50 to 2000 cpsi; and a density of from 0.5 to 0.8 g/cm3.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventor: Benedict Yorke Johnson
  • Publication number: 20190275495
    Abstract: A method of making an activated carbon honeycomb filter article, as defined herein, including: extruding a batch mixture to form an extruded honeycomb body, the batch including: an activated carbon powder; a first organic binder powder; a rheological plasticizing liquid; a porous inorganic binder powder; an extrusion aid; and water by superaddition, drying the extruded honeycomb body; and heat treating the dried honeycomb body. Also disclosed is an honeycomb filter article, having: an activated carbon; a porous inorganic binder powder; a BET surface area of from 950 m2/g to 1600 m2/g; a cell density of from 50 to 2000 cpsi; and a density of from 0.5 to 0.8 g/cm3.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventor: Benedict Yorke Johnson
  • Patent number: 10272647
    Abstract: Described herein are methods for improved transfer of graphene from formation substrates to target substrates. In particular, the methods described herein are useful in the transfer of high-quality chemical vapor deposition-grown monolayers of graphene from metal, e.g., copper, formation substrates via non-polymeric methods. The improved processes provide graphene materials with less defects in the structure.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: April 30, 2019
    Assignee: Corning Incorporated
    Inventors: Benedict Yorke Johnson, Prantik Mazumder, Kamal Kishore Soni
  • Publication number: 20180319704
    Abstract: An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; at least one of an optical film and a scratch-resistant film disposed over the primary surface; and an easy-to-clean (ETC) coating comprising a fluorinated material that is disposed over an outer surface of the at least one of an optical film and a scratch-resistant film. The at least one of an optical film and a scratch-resistant film comprises an average hardness of 12 GPa or more. Further, the outer surface of the at least one of an optical film and a scratch-resistant film comprises a surface roughness (Rq) of less than 1.0 nm. Further, the at least one of an optical film and a scratch-resistant film comprises a total thickness of about 500 nm or more.
    Type: Application
    Filed: May 8, 2018
    Publication date: November 8, 2018
    Inventors: Kaveh Adib, Robert Alan Bellman, Yuhui Jin, Benedict Yorke Johnson, Timothy Edward Myers, Eric Louis Null, Jung-keun Oh, Charles Andrew Paulson, James Joseph Price, Florence Christine Monique Verrier, Jin-ah Yoo
  • Publication number: 20180304322
    Abstract: An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; and an easy-to-clean (ETC) coating disposed over the primary surface, the coating comprising a bound ETC component and a mobile ETC component. Further, the bound ETC component comprises a perfluoropolyether (PFPE) silane. In addition, the mobile ETC component is disposed on or within the bound ETC component and comprises a fluorinated material, the mobile ETC component configured for movement relative to the bound ETC component.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 25, 2018
    Inventors: Robert Alan Bellman, Benedict Yorke Johnson, Carlo Anthony Kosik Williams, Eric Louis Null
  • Publication number: 20180290096
    Abstract: A non-extruded filter article, including: an activated carbon honeycomb substrate having a plurality of flow-through channels and porous walls, and the activated carbon substrate comprises a carbon in from 90 to 99.9 wt. % of the article, and the porous walls have a percentage porosity of from 40% to 65%. Also disclosed is a non-extrusion method of making the article and a method of using the article.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Inventors: Keith Leonard House, Benedict Yorke Johnson
  • Publication number: 20180257359
    Abstract: Disclosed herein are methods for transferring a graphene film onto a substrate, the methods comprising applying a polymer layer to a first surface of a graphene film, wherein a second surface of the graphene film is in contact with a growth substrate; applying a thermal release polymer layer to the polymer layer; removing the growth substrate to form a transfer substrate comprising an exposed graphene surface; and contacting the exposed graphene surface with a target substrate. Transfer substrates comprising a graphene film, a thermal release polymer layer, and a polymer layer are also disclosed herein.
    Type: Application
    Filed: August 30, 2016
    Publication date: September 13, 2018
    Applicant: Corning Incorporated
    Inventors: Benedict Yorke Johnson, Xinyuan Liu, Patrick Mazumder
  • Patent number: 10046264
    Abstract: A non-extruded filter article, including: an activated carbon honeycomb substrate having a plurality of flow-through channels and porous walls, and the activated carbon substrate comprises a carbon in from 90 to 99.9 wt. % of the article, and the porous walls have a percentage porosity of from 40% to 65%. Also disclosed is a non-extrusion method of making the article and a method of using the article.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: August 14, 2018
    Assignee: Corning Incorporated
    Inventors: Keith Leonard House, Benedict Yorke Johnson
  • Patent number: 10011503
    Abstract: Methods for making activated carbon-supported transition metal-based nanoparticles include (a) impregnated activated carbon with at least one transition metal-containing compound, and (b) heating the impregnated activated carbon at a temperature and for a time sufficient to carbothermally reduce the transition metal-containing compound. Also disclosed are activated carbon-supported transition metal-based nanoparticles produced by such methods. Further disclosed are methods for treating water and waste streams that include contacting the water or waste streams with the activated carbon-supported transition metal-based nanoparticles.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: July 3, 2018
    Assignee: CORNING INCORPORATED
    Inventors: William Peter Addiego, Benedict Yorke Johnson, Lingyan Wang
  • Patent number: 9982322
    Abstract: Described herein are methods of making metallic or elemental silver in the solid state. These methods generally include a step of forming an at least substantially solvent-free solid state reaction mixture that includes a silver-containing compound and an organic acid, followed by heating the reaction mixture at a temperature and for a time effective to form metallic silver from a cationic silver species of the silver-containing compound. Also described herein are metallic or elemental silver produced by these methods.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: May 29, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Benedict Yorke Johnson, Samuel Odei Owusu
  • Patent number: 9828285
    Abstract: Described herein are methods for improved transfer of graphene from formation substrates to target substrates. In particular, the methods described herein are useful in the transfer of high-quality chemical vapor deposition-grown monolayers of graphene from metal, e.g., copper, formation substrates to ultrathin, flexible glass targets. The improved processes provide graphene materials with less defects in the structure.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 28, 2017
    Assignees: Corning Incorporated, ICFO—THE INSTITUTE OF PHOTONIC SCIENCES, INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS (ICREA)
    Inventors: Benedict Yorke Johnson, Xinyuan Liu, Prantik Mazumder, Kamal Kishore Soni, Tonglai Chen, Miriam Marchena, Valerio Pruneri