Patents by Inventor Biswajeet Guha

Biswajeet Guha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11869987
    Abstract: Gate-all-around integrated circuit structures including varactors are described. For example, an integrated circuit structure includes a varactor structure on a semiconductor substrate. The varactor structure includes a plurality of discrete vertical arrangements of horizontal nanowires. A plurality of gate stacks is over and surrounding corresponding ones of the plurality of discrete vertical arrangements of horizontal nanowires. The integrated circuit structure also includes a tap structure adjacent to the varactor structure on the semiconductor substrate. The tap structure includes a plurality of merged vertical arrangements of horizontal nanowires. A plurality of semiconductor structures is over and surrounding corresponding ones of the plurality of merged vertical arrangements of horizontal nanowires.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Ayan Kar, Saurabh Morarka, Carlos Nieva-Lozano, Kalyan Kolluru, Biswajeet Guha, Chung-Hsun Lin, Brian Greene, Tahir Ghani
  • Patent number: 11869891
    Abstract: Non-planar integrated circuit structures having mitigated source or drain etch from replacement gate process are described. For example, an integrated circuit structure includes a fin or nanowire. A gate stack is over the fin or nanowire. The gate stack includes a gate dielectric and a gate electrode. A first dielectric spacer is along a first side of the gate stack, and a second dielectric spacer is along a second side of the gate stack. The first and second dielectric spacers are over at least a portion of the fin or nanowire. An insulating material is vertically between and in contact with the portion of the fin or nanowire and the first and second dielectric spacers. A first epitaxial source or drain structure is at the first side of the gate stack, and a second epitaxial source or drain structure is at the second side of the gate stack.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Jun Sung Kang, Kai Loon Cheong, Erica J. Thompson, Biswajeet Guha, William Hsu, Dax M. Crum, Tahir Ghani, Bruce Beattie
  • Publication number: 20240006504
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20240006541
    Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Biswajeet GUHA, Mauro J. KOBRINSKY, Tahir GHANI
  • Patent number: 11862635
    Abstract: Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, and methods of fabricating neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, are described. For example, a structure includes first and second vertical arrangements of nanowires, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stacks are over the first and second vertical arrangements of nanowires, respectively. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires, and second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening dielectric structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar
  • Publication number: 20230420443
    Abstract: Integrated circuit (IC) devices with diodes formed in a subfin between a support structure of an IC device and one or more nanoribbon stacks are disclosed. To alleviate challenges of limited semiconductor cross-section provided by the subfin, etch depths in the subfin (i.e., depths of recesses in the subfin formed as a part of forming the diodes) are selectively optimized and varied. Deeper recesses are made in subfin portions at which diode terminals (e.g., anodes and cathodes) are formed, to increase the semiconductor cross-section in those portions, thus providing improved subfin contacts. Shallower recesses (or no recesses) are made in subfin portion between the diode terminals, to increase subfin retention. Thus, subfin diodes may be provided in a manner that enables improved diode conductance and/or improved current carrying capabilities while advantageously using substantially the same etch processes as those used for forming nanoribbon-based transistors elsewhere in the IC device.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Benjamin John Orr, Chu-Hsin Liang, Biswajeet Guha, Saptarshi Mandal, Brian Greene, Sameer Jayanta Joglekar, Chung-Hsun Lin, Mauro J. Kobrinsky
  • Publication number: 20230420574
    Abstract: Techniques are provided herein to form semiconductor devices on a substrate with an alternative crystallographic surface orientation. The techniques are particularly useful with respect to gate-all-around and forksheet transistor configurations. A substrate having a (110) crystallographic surface orientation forms the basis for the growth of alternating types of semiconductor layers. Both n-channel and p-channel transistors may be fabricated using silicon nanoribbons formed from some of the alternating semiconductor layers. The crystallographic surface orientation of the Si nanoribbons will reflect the same crystallographic surface orientation of the substrate, which leads to a higher hole mobility across the Si nanoribbons of the p-channel devices and an overall improved CMOS device performance.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Ashish Agrawal, Jack T. Kavalieros, Rambert Nahm, Natalie Briggs, Susmita Ghose, Glenn Glass, Devin R. Merrill, Aaron A. Budrevich, Shruti Subramanian, Biswajeet Guha, William Hsu, Adedapo A. Oni, Rahul Ramamurthy, Anupama Bowonder, Hsin-Ying Tseng, Rajat K. Paul, Marko Radosavljevic
  • Patent number: 11855223
    Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices, are described. In an example, an integrated circuit structure includes a semiconductor fin above a substrate and having a length in a first direction. A nanowire is over the semiconductor fin. A gate structure is over the nanowire and the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included, where a first of the pair of gate endcap isolation structures is spaced equally from a first side of the semiconductor fin as a second of the pair of gate endcap isolation structures is spaced from a second side of the semiconductor fin.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Leonard P. Guler, Dax M. Crum, Tahir Ghani
  • Patent number: 11837641
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20230387324
    Abstract: Gate-all-around integrated circuit structures having nanowires with tight vertical spacing, and methods of fabricating gate-all-around integrated circuit structures having nanowires with tight vertical spacing, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal silicon nanowires. A vertical spacing between vertically adjacent silicon nanowires is less than 6 nanometers. A gate stack is around the vertical arrangement of horizontal silicon nanowires. A first source or drain structure is at a first end of the vertical arrangement of horizontal silicon nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal silicon nanowires.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Tahir GHANI, Susmita GHOSE, Zachary GEIGER
  • Patent number: 11824116
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Ayan Kar, Nicholas Thomson, Benjamin Orr, Nathan Jack, Kalyan Kolluru, Tahir Ghani
  • Patent number: 11824107
    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Tahir Ghani, Stephen Cea, Biswajeet Guha
  • Publication number: 20230352561
    Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Leonard P. GULER, Biswajeet GUHA, Tahir GHANI, Swaminathan SIVAKUMAR
  • Patent number: 11804523
    Abstract: Integrated circuit structures having source or drain structures with abrupt dopant profiles are described. In an example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. The first and second epitaxial source or drain structures include silicon, phosphorous and arsenic, with an atomic concentration of phosphorous substantially the same as an atomic concentration of arsenic.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 31, 2023
    Assignee: Intel Corporation
    Inventors: Ryan Keech, Anand S. Murthy, Nicholas G. Minutillo, Suresh Vishwanath, Mohammad Hasan, Biswajeet Guha, Subrina Rafique
  • Patent number: 11799037
    Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Mauro J. Kobrinsky, Tahir Ghani
  • Patent number: 11799009
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
  • Patent number: 11769836
    Abstract: Gate-all-around integrated circuit structures having nanowires with tight vertical spacing, and methods of fabricating gate-all-around integrated circuit structures having nanowires with tight vertical spacing, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal silicon nanowires. A vertical spacing between vertically adjacent silicon nanowires is less than 6 nanometers. A gate stack is around the vertical arrangement of horizontal silicon nanowires. A first source or drain structure is at a first end of the vertical arrangement of horizontal silicon nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal silicon nanowires.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Biswajeet Guha, Tahir Ghani, Susmita Ghose, Zachary Geiger
  • Patent number: 11757037
    Abstract: Epitaxial oxide plugs are described for imposing strain on a channel region of a proximate channel region of a transistor. The oxide plugs form epitaxial and coherent contact with one or more source and drain regions adjacent to the strained channel region. The epitaxial oxide plugs can be used to either impart strain to an otherwise unstrained channel region (e.g., for a semiconductor body that is unstrained relative to an underlying buffer layer), or to restore, maintain, or increase strain within a channel region of a previously strained semiconductor body. The epitaxial crystalline oxide plugs have a perovskite crystal structure in some embodiments.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Biswajeet Guha, Anupama Bowonder, Anand S. Murthy, Tahir Ghani
  • Patent number: 11749733
    Abstract: Fin shaping using templates, and integrated circuit structures resulting therefrom, are described. For example, integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has a vertical portion and one or more lateral recess pairs in the vertical portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack. A second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Mark Armstrong, William Hsu, Tahir Ghani, Swaminathan Sivakumar
  • Patent number: 11742410
    Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar