Patents by Inventor Brent Boyce

Brent Boyce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604834
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of nickel, titanium, and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of nickel can be between 5 and 15 wt %. The percentage of titanium can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: March 31, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Muhammad Imran, Jingyu Lao, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu, Guizhen Zhang
  • Publication number: 20200079686
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability.
    Type: Application
    Filed: March 18, 2019
    Publication date: March 12, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Patent number: 10584058
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including titanium nitride (e.g., TIN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 10, 2020
    Assignee: Guardian Glass, LLC
    Inventors: Brent Boyce, Yiwei Lu, Guowen Ding, Cesar Clavero, Daniel Schweigert, Minh Le
  • Patent number: 10570057
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 25, 2020
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Patent number: 10562812
    Abstract: Certain example embodiments of this invention relate to coated articles having a metamaterial-inclusive layer, coatings having a metamaterial-inclusive layer, and/or methods of making the same. Metamaterial-inclusive coatings may be used, for example, in low-emissivity applications, providing for more true color rendering, low angular color dependence, and/or high light-to-solar gain. The metamaterial material may be a noble metal or other material, and the layer may be made to self-assemble by virtue of surface tensions associated with the noble metal or other material, and the material selected for use as a matrix. An Ag-based metamaterial layer may be provided below a plurality (e.g., 2, 3, or more) continuous and uninterrupted layers comprising Ag in certain example embodiments. In certain example embodiments, barrier layers comprising TiZrOx may be provided between adjacent layers comprising Ag, as a lower-most layer in a low-E coating, and/or as an upper-most layer in a low-E coating.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: February 18, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Brent Boyce, Patricia Tucker, Shashi Shah, Cesar Clavero
  • Patent number: 10550033
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index dielectric multilayer film. The high index dielectric multilayer film may be of or include a first high index layer of or including ZrSiN and/or ZrSiAlN, and a second high index layer of or including titanium oxide (e.g., TiO2). The first high index layer of or including ZrSiN and/or ZrSiAlN may be amorphous or substantially amorphous, and the second high index layer of or including titanium oxide may be substantially crystalline in certain example embodiments. The low-E coating may be used in applications such as monolithic or insulating glass (IG) window units, vehicle windows, or the like.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 4, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Guowen Ding, Daniel Schweigert, Minh Le, Brent Boyce
  • Publication number: 20200017402
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). The provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver in a low-E coating has effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). One or more such crystalline, or substantially crystalline, layers may be provided under one or more corresponding IR reflecting layers comprising silver.
    Type: Application
    Filed: May 22, 2019
    Publication date: January 16, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Publication number: 20200017405
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value).
    Type: Application
    Filed: December 14, 2018
    Publication date: January 16, 2020
    Inventors: Yongli XU, Brent BOYCE, Salah BOUSSAAD, Philip J. LINGLE, Jingyu LAO, Richard VERNHES
  • Publication number: 20200010360
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including titanium nitride (e.g., TiN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Applicant: Guardian Glass, LLC
    Inventors: Brent Boyce, Yiwei LU, Guowen DING, Cesar CLAVERO, Daniel SCHWEIGERT, Minh LE
  • Publication number: 20190375678
    Abstract: Certain example embodiments of this invention relate to coated articles having a metamaterial-inclusive layer, coatings having a metamaterial-inclusive layer, and/or methods of making the same. Metamaterial-inclusive coatings may be used, for example, in low-emissivity applications, providing for more true color rendering, low angular color dependence, and/or high light-to-solar gain. The metamaterial material may be a noble metal or other material, and the layer may be made to self-assemble by virtue of surface tensions associated with the noble metal or other material, and the material selected for use as a matrix. An Ag-based metamaterial layer may be provided below a plurality (e.g., 2, 3, or more) continuous and uninterrupted layers comprising Ag in certain example embodiments. In certain example embodiments, barrier layers comprising TiZrOx may be provided between adjacent layers comprising Ag, as a lower-most layer in a low-E coating, and/or as an upper-most layer in a low-E coating.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 12, 2019
    Inventors: Brent BOYCE, Patricia TUCKER, Shashi SHAH, Cesar CLAVERO
  • Publication number: 20190377115
    Abstract: Certain example embodiments of this invention relate to coated articles having a metamaterial-inclusive layer, coatings having a metamaterial-inclusive layer, and/or methods of making the same. Metamaterial-inclusive coatings may be used, for example, in low-emissivity applications, providing for more true color rendering, low angular color dependence, and/or high light-to-solar gain. The metamaterial material may be a noble metal or other material, and the layer may be made to self-assemble by virtue of surface tensions associated with the noble metal or other material, and the material selected for use as a matrix. An Ag-based metamaterial layer may be provided below a plurality (e.g., 2, 3, or more) continuous and uninterrupted layers comprising Ag in certain example embodiments. In certain example embodiments, barrier layers comprising TiZrOx may be provided between adjacent layers comprising Ag, as a lower-most layer in a low-E coating, and/or as an upper-most layer in a low-E coating.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 12, 2019
    Inventors: Brent BOYCE, Patricia TUCKER, Shashi SHAH, Cesar CLAVERO
  • Publication number: 20190375677
    Abstract: Certain example embodiments of this invention relate to coated articles having a metamaterial-inclusive layer, coatings having a metamaterial-inclusive layer, and/or methods of making the same. Metamaterial-inclusive coatings may be used, for example, in low-emissivity applications, providing for more true color rendering, low angular color dependence, and/or high light-to-solar gain. The metamaterial material may be a noble metal or other material, and the layer may be made to self-assemble by virtue of surface tensions associated with the noble metal or other material, and the material selected for use as a matrix. An Ag-based metamaterial layer may be provided below a plurality (e.g., 2, 3, or more) continuous and uninterrupted layers comprising Ag in certain example embodiments. In certain example embodiments, barrier layers comprising TiZrOx may be provided between adjacent layers comprising Ag, as a lower-most layer in a low-E coating, and/or as an upper-most layer in a low-E coating.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 12, 2019
    Inventors: Brent BOYCE, Patricia TUCKER, Shashi SHAH, Cesar CLAVERO
  • Patent number: 10494859
    Abstract: Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 3, 2019
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Marcus Frank, Brent Boyce, Hartmut Knoll, Alexander Lorenz, Uwe Kriltz
  • Patent number: 10480058
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one protective metallic or substantially metallic doped silver layer in order to improve chemical durability characteristics of the low-E coating. The silver based IR reflecting layer and adjacent protective doped silver layer are part of a low emissivity (low-E) coating, and may be sandwiched between at least transparent dielectric layers. A barrier layer including Ni and/or Cr may be provided over and directly contacting the protective doped silver layer in order to further improve durability of the low-E coating.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 19, 2019
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Yiwei Lu, Brent Boyce, Guowen Ding, Scott Jewhurst, Cesar Clavero, Daniel Schweigert, Guizhen Zhang, Daniel Lee
  • Patent number: 10472880
    Abstract: Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: November 12, 2019
    Assignees: GUARDIAN GLASS, LLC, GUARDIAN EUROPE S.A.R.L.
    Inventors: Marcus Frank, Brent Boyce, Hartmut Knoll, Alexander Lorenz, Uwe Kriltz
  • Publication number: 20190323287
    Abstract: A coated article includes a low-emissivity (low-E) coating. The low-E coating includes at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and a dielectric overcoat designed to increase solar heat gain coefficient (SHGC) of the coated article. A dielectric undercoat may also be designed to increase SHGC of the coated article in certain example embodiments. In certain example embodiments, the overcoat and/or undercoat are designed to increase SHGC while also providing for desirably high visible transmission (TY or Tvis) and desirably low normal emittance (En).
    Type: Application
    Filed: April 4, 2019
    Publication date: October 24, 2019
    Inventors: Guowen DING, Daniel SCHWEIGERT, Minh LEE, Brent BOYCE
  • Publication number: 20190276928
    Abstract: A coated article includes a silver (Ag) based infrared (IR) reflecting layer(s) on a glass substrate that is provided adjacent to and contacting at least one metallic or substantially metallic zinc (Zn) inclusive barrier layer in order to improve chemical durability characteristics of the low-E coating. In certain example embodiments, the silver based layer may be sandwiched between first and second metallic or substantially metallic barrier layers of or including zinc. The IR reflecting layer(s) and zinc based barrier layer(s) are part of a low emissivity (low-E) coating.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 12, 2019
    Inventors: Brent BOYCE, Yiwei LU, Guowen DING, Guizhen ZHANG, Daniel LEE, Daniel SCHWEIGERT, Cesar CLAVERO, Scott JEWHURST, Minh LE
  • Patent number: 10392300
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including titanium nitride (e.g., TiN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 27, 2019
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Brent Boyce, Yiwei Lu, Guowen Ding, Cesar Clavero, Daniel Schweigert, Minh Le
  • Publication number: 20190248700
    Abstract: A low-emissivity (low-E) coating on a substrate (e.g., glass substrate) includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers), a layer comprising silicon nitride, and an absorber layer of or including a material such as niobium zirconium which may be oxided and/or nitrided. The absorber layer is designed to allow the coated article to realize glass side reflective (equivalent to exterior reflective in an IG window unit when the coating is on surface #2 of the IG unit) grey color. In certain example embodiments, the coated article (monolithic form and/or in IG window unit form) has a low visible transmission (e.g., from 20-45%, more preferably from 22-39%, and most preferably from 25-37%). In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered and/or heat bent).
    Type: Application
    Filed: October 18, 2016
    Publication date: August 15, 2019
    Applicants: GUARDIAN GLASS, LLC, GUARDIAN GLASS HOLDING S.P.C.
    Inventors: ARITRA BISWAS, BRENT BOYCE, ALLEN CHU, PHILIP J. LINGLE, KENNETH LORD, MUNISWAMI NAIDU, KRISHNA SWAMYNAIDU
  • Patent number: 10343948
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and a plurality of high refractive index dielectric layers of or including a nitride of Zr and Al. In certain example embodiments, the high refractive index dielectric layers of or including a nitride of Zr and Al may be amorphous or substantially amorphous so as to allow the low-E coating to better withstand optional heat treatment (HT) such as thermal tempering. In certain example embodiments, the low-E coating may be used in applications such as monolithic or insulating glass (IG) window unit, vehicle windows, of the like.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 9, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Guowen Ding, Guizhen Zhang, Daniel Schweigert, Daniel Lee, Scott Jewhurst, Cesar Clavero, Minh Le, Brent Boyce