Patents by Inventor Brent Boyce

Brent Boyce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180244569
    Abstract: Example embodiments of this invention relate to a coated article having a low-E coating including at least one infrared (IR) reflecting layer of silver that is doped with a material such as SiAl, SiZn, or SiZnCu. The IR reflecting layer(s) is part of a low-E coating, and may be sandwiched between at least transparent dielectric layers. A silver based IR reflecting layer doped in such a manner for example provides for improved corrosion resistance and chemical durability of the layer and the overall coating, and improved stability such as reduced haze upon optional heat treatment (HT), while maintaining good optical properties, compared to an Ag IR reflecting layer that is not doped.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 30, 2018
    Inventors: Yiwei LU, Brent BOYCE, Guizhen ZHANG, Guowen DING, Daniel SCHWEIGERT, Scott JEWHURST, Daniel LEE, Cesar CLAVERO, Minh LE
  • Publication number: 20180237336
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including titanium nitride (e.g., TiN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Brent Boyce, Yiwei LU, Guowen DING, Cesar CLAVERO, Daniel SCHWEIGERT, Minh LE
  • Publication number: 20180155822
    Abstract: A coated article is provided so as to include a low-E (low emissivity) coating having an infrared (IR) reflecting layer sandwiched between at least a pair of dielectric layers. The IR reflecting layer may be of or include a material such as silver (Ag), and is provided between a pair of contact layers. The low-E coating includes an overcoat having a substantially metallic layer (e.g., NbZr or Zr) which has been found to improve the durability of the coating without significantly sacrificing desired optical characteristics. Such coated articles may be used in the context of windows.
    Type: Application
    Filed: January 16, 2018
    Publication date: June 7, 2018
    Inventors: Muhammad IMRAN, Francis WUILLAUME, Brent BOYCE
  • Patent number: 9869016
    Abstract: A coated article is provided so as to include a low-E (low emissivity) coating having an infrared (IR) reflecting layer sandwiched between at least a pair of dielectric layers. The IR reflecting layer may be of or include a material such as silver (Ag), and is provided between a pair of contact layers. The low-E coating includes an overcoat having a substantially metallic layer (e.g., NbZr or Zr) which has been found to improve the durability of the coating without significantly sacrificing desired optical characteristics. Such coated articles may be used in the context of windows.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: January 16, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Muhammad Imran, Francis Wuillaume, Brent Boyce
  • Patent number: 9816316
    Abstract: A low-E coating supported by a glass substrate, the coating from the glass substrate outwardly including at least the following layers: a dielectric layer of or including silicon nitride; a high index layer having a refractive index of at least 2.1; another dielectric layer of or including silicon nitride; a layer comprising zinc oxide; an infrared (IR) reflecting layer, wherein the coating includes only one IR reflecting layer; and an overcoat including (i) a layer comprising tin oxide and (ii) a layer comprising silicon nitride located over and contacting the layer comprising tin oxide. An IG unit including the coating may have a visible transmission of at least 70%.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: November 14, 2017
    Assignees: Guardian Glass, LLC, Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Publication number: 20170307793
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Guizhen ZHANG, Brent BOYCE, Jeremy CHENG, Guowen DING, Muhammad IMRAN, Minh Huu LE, Daniel SCHWEIGERT, Yongli XU
  • Patent number: 9796620
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 24, 2017
    Assignee: Guardian Glass, LLC
    Inventors: Muhammad Imran, Brent Boyce, Jean-Marc Lemmer, Marcus Frank, Yongli Xu
  • Patent number: 9776915
    Abstract: An insulating glass (IG) window unit includes first and second substrates, and a low-emissivity (low-E) coating supported by one of the substrates. The low-E coating has two silver based infrared (IR) reflecting layers and allows the IG window unit to realize an increased SHGC to U-value ratio, and an increased thickness ratio of an upper silver based layer of the coating to a bottom silver based layer of the coating. The low-E coating is designed to have a low film-side reflectance, so that for example when the low-E coating is used on surface number three of an IG window unit the IG window unit can realize reduced visible reflectance as viewed from the outside of the building on which the IG window unit is mounted or is to be mounted.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: October 3, 2017
    Assignee: Guardian Glass, LLC
    Inventors: Francis Wuillaume, Brent Boyce
  • Publication number: 20170241012
    Abstract: Certain example embodiments relate to techniques for improving the uniformity of, and/or conformance to a desired pattern for, metal island layers (MILs) formed on a substrate (e.g., a glass or other substrate), and/or associated products. Certain example embodiments form MILs using a laser or other energy source or magnetic field assisted technique, e.g., to compensate for non-uniformities that otherwise likely would result in the MIL diverging from its desired configuration. For example, a laser or other energy source may introduce heat onto a substrate, enable pulsed laser deposition, raster a target including the MIL metal to be deposited, raster a substrate where the MIL is to be formed, etc. These and/or other techniques may be used to enable the MIL to be formed on the substrate in a desired pattern, e.g., by compensating for implicit non-uniformities of the substrate and/or by selectively creating non-uniformities in how the MIL is formed.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventors: Brent BOYCE, Yiwei LU
  • Publication number: 20170241009
    Abstract: Certain example embodiments relate to techniques for improving the uniformity of, and/or conformance to a desired pattern for, metal island layers (MILs) formed on a substrate (e.g., a glass or other substrate), and/or associated products. Certain example embodiments form MILs using a laser or other energy source or magnetic field assisted technique, e.g., to compensate for non-uniformities that otherwise likely would result in the MIL diverging from its desired configuration. For example, a laser or other energy source may introduce heat onto a substrate, enable pulsed laser deposition, raster a target including the MIL metal to be deposited, raster a substrate where the MIL is to be formed, etc. These and/or other techniques may be used to enable the MIL to be formed on the substrate in a desired pattern, e.g., by compensating for implicit non-uniformities of the substrate and/or by selectively creating non-uniformities in how the MIL is formed.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventors: Brent BOYCE, Yiwei LU
  • Patent number: 9725358
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including zinc oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: August 8, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Brent Boyce, Jean-Marc Lemmer, Marcus Frank, Yongli Xu
  • Patent number: 9703024
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 11, 2017
    Assignees: Intermolecular Inc., Guardian Industries Corp.
    Inventors: Guizhen Zhang, Brent Boyce, Jeremy Cheng, Guowen Ding, Muhammad Imran, Daniel Schweigert, Yongli Xu
  • Publication number: 20170129808
    Abstract: An insulating glass (IG) window unit includes first and second substrates, and a low-emissivity (low-E) coating supported by one of the substrates. The low-E coating has two silver based infrared (IR) reflecting layers and allows the IG window unit to realize an increased SHGC to U-value ratio, and an increased thickness ratio of an upper silver based layer of the coating to a bottom silver based layer of the coating. The low-E coating is designed to have a low film-side reflectance, so that for example when the low-E coating is used on surface number three of an IG window unit the IG window unit can realize reduced visible reflectance as viewed from the outside of the building on which the IG window unit is mounted or is to be mounted.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Francis WUILLAUME, Brent BOYCE
  • Publication number: 20170081906
    Abstract: Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Marcus FRANK, Brent BOYCE, Hartmut KNOLL, Alexander LORENZ, Uwe KRILTZ
  • Publication number: 20170081242
    Abstract: Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Marcus FRANK, Brent BOYCE, Hartmut KNOLL, Alexander LORENZ, Uwe KRILTZ
  • Publication number: 20170052297
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
    Type: Application
    Filed: November 9, 2016
    Publication date: February 23, 2017
    Inventors: Guizhen ZHANG, Brent BOYCE, Jeremy CHENG, Guowen DING, Muhammad IMRAN, Daniel SCHWEIGERT, Yongli XU
  • Publication number: 20170044054
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including zinc oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Application
    Filed: September 16, 2016
    Publication date: February 16, 2017
    Inventors: Muhammad IMRAN, Brent BOYCE, Jean-Marc LEMMER, Marcus FRANK, Yongli XU
  • Patent number: 9556070
    Abstract: An insulating glass (IG) window unit includes first and second substrates, and a low-emissivity (low-E) coating supported by one of the substrates. The low-E coating has two silver based infrared (IR) reflecting layers and allows the IG window unit to realize an increased SHGC to U-value ratio, and an increased thickness ratio of an upper silver based layer of the coating to a bottom silver based layer of the coating. The low-E coating is designed to have a low film-side reflectance, so that for example when the low-E coating is used on surface number three of an IG window unit the IG window unit can realize reduced visible reflectance as viewed from the outside of the building on which the IG window unit is mounted or is to be mounted.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: January 31, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Francis Wuillaume, Brent Boyce
  • Patent number: 9556066
    Abstract: Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: January 31, 2017
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches Pour le Verre et al Ceramique S.A. (C.R.V.C.)
    Inventors: Marcus Frank, Brent Boyce, Hartmut Knoll, Alexander Lorenz, Uwe Kriltz
  • Publication number: 20160340235
    Abstract: This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 50%, more preferably no greater than about 40%, and most preferably no greater than about 39%).
    Type: Application
    Filed: August 8, 2016
    Publication date: November 24, 2016
    Inventors: Francis WUILLAUME, Muhammad IMRAN, Afonso KRELING, Brent BOYCE