Patents by Inventor Brett Schleicher

Brett Schleicher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8019443
    Abstract: A nerve stimulation lead has a distal end, a proximal end, and a longitudinal length. The nerve stimulation lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal end, and a plurality of conductive wires electrically coupling the plurality of electrodes electrically to the plurality of terminals. The nerve stimulation lead also includes at least one anchoring unit disposed on the nerve stimulation lead. The at least one anchoring unit is configured and arranged for anchoring the nerve stimulation lead against a bony structure.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: September 13, 2011
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Andrew DiGiore, Rafael Carbunaru, Courtney Lane, Kristen N. Jaax
  • Publication number: 20110137372
    Abstract: A system and method for applying stimulation to a target stimulation site within a patient, while avoiding undesirable eye movement side effects of the stimulation, are provided. The method includes determining whether eye movement, sensed by internal or external electrodes, is a side effect of a conveyed electrical stimulus. If the eye movement is a side effect, the electrical current distribution of the stimulus is modified in order to steer a locus of the electrical stimulus from one tissue region of the patient to another different tissue region of the patient, thereby mitigating the eye movement side effects. For example, the locus of the electrical stimulus may be steered away from the oculomotor nerve. Eye movement side effects of DBS treatment may include apraxia of lid opening, downward movement and adduction of only one eyeball, and/or continuous deviation of both eyeballs.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: James Makous, Brett Schleicher, Rafael Carbunaru, Kristen Jaax, Andrew DiGiore
  • Publication number: 20100331920
    Abstract: Electrical energy is transcutaneously transmitted from an external charger to an implanted medical device. The external charger includes a charging head that is selectively shapeable to conform to the surface of a patient to enhance charge efficiency and patient comfort. An alternating current charging coil is housed in the charging head and configured for transcutaneously transmitting electrical energy to the implanted medical device. The shape of the coil is changeable as the charging head is shaped, and at least one sensor determines changes in the shape of the charging coil and causes the charge of the coil to be adjusted based on the coil shape.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Publication number: 20100331933
    Abstract: An implantable microstimulator includes an elongate casing, a flap coupled directly to the casing, and electrodes attached to the flap such that the electrodes extend laterally relative to the longitudinal axis of the casing. The electrodes are coupled to active circuitry that is housed within the casing. Due to the lateral arrangement of the electrodes relative to the casing, effective operation of the microstimulator may still occur even after the microstimulator migrates away from the target stimulation site. Since there are not any leads associated with the microstimulator, the entire microstimulator, including the electrodes and the casing, is implanted adjacent to the target stimulation site. The electrodes may be configured for mono-polar or multi-polar stimulation. In one example, the microstimulator includes an insulative coating on the casing and the coating and the flap are contiguous.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Rafael Carbunaru, Andrew DiGiore, Brett Schleicher
  • Publication number: 20100331918
    Abstract: Electrical energy is transcutaneously transmitted from an external charger to an implanted medical device. The external charger includes a charging head comprising a flexible material that is selectively shaped to conform to the surface of a patient to enhance charge efficiency and patient comfort. The flexible material is curable to become inflexible and embody a fixed shape and may comprise, for example, a thermoplastic for being re-shaped and re-cured multiple times, or a thermoset plastic that maintains a permanent shape and cannot be re-cured to form another shape. The charging head may also include one or more sensors for determining the shape of a charging coil in the charging head, which cause the charge of the coil to be adjusted based on the coil shape.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Publication number: 20100331919
    Abstract: Electrical energy is transcutaneously transmitted from an external charger to an implanted medical device. The external charger includes a charging head comprising a plurality of pivotable hinged sections for selectively shaping the charging head to conform to a surface of a patient. The external charger further includes an alternating current (AC) charging coil housed in the charging head for transcutaneously transmitting electrical energy to the implanted medical device. The charging head may also include one or more sensors for determining the shape of a charging coil in the charging head, which cause the charge of the coil to be adjusted based on the coil shape.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Publication number: 20100331917
    Abstract: Electrical energy is transcutaneously transmitted from an external charger to an implanted medical device. The external charger includes a charging head that is selectively shaped to conform to the surface of a patient to enhance charge efficiency and patient comfort. The charging head has a plurality of malleable support members extending through the charging head for affixing the flexible charging head in the selected shape, while the flexible charging head conforms to the surface of the patient. The charging head may also include one or more sensors for determining the shape of a charging coil in the charging head, which cause the charge of the coil to be adjusted based on the coil shape.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Publication number: 20100145357
    Abstract: A burr hole plug comprises a plug base configured for being mounted around a burr hole. The plug base includes an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base. The retainer further includes first and second slidable clamping mechanisms configured for securing the medical devices therebetween within the aperture of the plug base. A method comprises introducing the medical device through the burr hole, mounting a plug base around the burr hole, such that the medical device extends through the plug base aperture, mounting the retainer within the aperture of the plug base, and sliding the first and second clamping mechanisms secure the medical device therebetween.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Courtney Lane, Jesse Geroy, James C. Makous, Todd Whitehurst, Matthew Flowers, John Michael Barker, Terry Ferrell, John Swoyer, Brett Schleicher, Jeff Gagnon, Andrew Digiore, Ellis Garai, Kristen Jaax, Rafael Carbunaru
  • Publication number: 20090248095
    Abstract: A nerve stimulation lead has a distal end, a proximal end, and a longitudinal length. The nerve stimulation lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal end, and a plurality of conductive wires electrically coupling the plurality of electrodes electrically to the plurality of terminals. The nerve stimulation lead also includes at least one anchoring unit disposed on the nerve stimulation lead. The at least one anchoring unit is configured and arranged for anchoring the nerve stimulation lead against a bony structure.
    Type: Application
    Filed: March 27, 2009
    Publication date: October 1, 2009
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Andrew DiGiore, Rafael Carbunaru, Courtney Lane, Kristen N. Jaax
  • Patent number: 7590445
    Abstract: A device and methods for automatically evaluating one or more patient physiological parameters and, upon determination that certain therapies are indicated, delivering therapeutic mechanical stimulations to tissue of the patient. The mechanical stimulations generally include vibrations delivered at frequencies somewhat higher or lower than an intrinsic frequency and the therapeutic vibrations are delivered to drive the intrinsic frequency towards a desired value. The device and methods more closely emulate natural physiologic feedback mechanisms and can reduce undesired side effects of other known therapies. The device can include a small and efficient electrical motor which is interconnected with a crank and link mechanism to generate oscillatory motion which is conducted to a flexible wall of a bio-compatible housing of the device.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: September 15, 2009
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Russell Klehn, Brett Schleicher, Reuben Westmoreland, Euljoon Park
  • Publication number: 20090192575
    Abstract: Systems and techniques for thermal management of implantable medical devices. In one aspect an implantable device includes an active component configured to perform medical activities, a charging component configured to convert energy from outside a body in which the implantable device is implanted into potential energy, and a thermal barrier between the charging component and the active portion. The thermal barrier thermally isolates the charging component from the active portion so that thermal resistance between the charging component and the active component is above the thermal resistance between the charging component and the body.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventors: Rafael Carbunaru, Andrew DiGiore, Brett Schleicher
  • Publication number: 20090192557
    Abstract: Methods and systems of treating a patient with pancreatitis pain include providing a stimulator, configuring one or more stimulation parameters to control sphincter of Oddi function, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to control sphincter of Oddi function with the stimulator in accordance with the one or more stimulation parameters, and applying the stimulus with the stimulator to one or more stimulation sites in accordance with the one or more stimulation parameters.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, Kristen N. Jaax, Andrew DiGiore, Brett Schleicher, Greg Baldwin, Roger Hastings
  • Publication number: 20090192558
    Abstract: Methods and systems of treating a patient with pancreatitis pain include providing a stimulator, configuring one or more stimulation parameters to treat pancreatitis pain, programming the stimulator with the one or more stimulation parameters, generating a stimulus configured to treat pancreatitis pain with the stimulator in accordance with the one or more stimulation parameters, and applying the stimulus with the stimulator to one or more stimulation sites in accordance with the one or more stimulation parameters.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventors: Todd K. Whitehurst, Kristen N. Jaax, Rafael Carbunaru, Greg Baldwin, Brett Schleicher, Andrew DiGiore, Roger Hastings
  • Publication number: 20090192555
    Abstract: Systems and techniques for improving the fixation of implantable pulse generators. In one aspect, a device includes an implantable pulse generator that comprises electrical circuitry configured to generate an electrical pulse and a biocompatible casing that houses the electrical circuitry and on which a collection of electrodes and a collection of fixation elements are mounted.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 30, 2009
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Todd K. Whitehurst, Andrew DiGiore
  • Publication number: 20090192568
    Abstract: Methods for treating seizures caused by brain stimulation include providing a stimulator, programming the stimulator with one or more stimulation parameters configured to treat a medical condition, applying at least one stimulus with the stimulator to a stimulation site within the brain of a patient in accordance with the one or more stimulation parameters, and monitoring the patient for a seizure caused by the at least one stimulus.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 30, 2009
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, Kristen N. Jaax, Andrew DiGiore, Brett Schleicher, Greg Baldwin
  • Publication number: 20090125088
    Abstract: Systems and techniques for implanting medical devices. In one aspect, an apparatus includes a flexible base member that can be flexed manually to conform to a contour of an anatomy, the base member including a radioscopic indicium that has a characteristic such that, under radioscopic imaging, passage of a skin-penetrating electromagnetic radiation is hindered to an extent that is distinguishable from a hindrance of the electromagnetic radiation by another portion of the base member.
    Type: Application
    Filed: November 12, 2007
    Publication date: May 14, 2009
    Inventors: Brett Schleicher, Rafael Carbunaru, Kristen N. Jaax, Todd K. Whitehurst
  • Publication number: 20090112327
    Abstract: A burr hole plug comprises a plug base including a flange configured for being mounted around a burr hole, an aperture through which an elongated medical device may pass, and tabs configured for extending within the cranial burr hole to center the plug base relative to the cranial burr hole. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base to secure the medical device. A method may comprise locating the plug base within a burr hole, such that the tabs are disposed within the burr hole to center the plug base relative to the cranial burr hole, introducing the elongated medical device through the cranial burr hole and into the brain tissue of the patient, mounting the retainer within the aperture of the plug base, and actuating the retainer to secure the medical device.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 30, 2009
    Inventors: Courtney Lane, Jesse Geroy, James C. Makous, Todd Whitehurst, Matthew Flowers, John Michael Barker, Terry Ferrell, John Swoyer, Brett Schleicher, Jeff Gagnon, Andrew Digiore, Ellis Garai, Kristen Jaax, Rafael Carbunaru
  • Publication number: 20090112272
    Abstract: Exemplary systems include a stimulator configured to be implanted within a patient, the stimulator having a body defined by at least one side surface disposed in between distal and proximal end surfaces, and a connector assembly configured to be coupled to the stimulator and extend parallel to the at least one side surface of the stimulator. The connector assembly is further configured to facilitate removable coupling of a lead having one or more electrodes disposed thereon to the stimulator.
    Type: Application
    Filed: October 31, 2008
    Publication date: April 30, 2009
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Rafael Carbunaru, Todd K. Whitehurst, Kristen N. Jaax, Greg Baldwin, Andrew DiGiore
  • Publication number: 20090082832
    Abstract: Systems and techniques for thermal management of implantable medical devices. In one aspect, an implantable device adapted for implantation in a body includes a conductor component that conducts an electrical current in response to the body in which that implantable device is implanted being subjected to an alternating electromagnetic field and a thermal management component in thermal contact with the conductor component and configured to manage excess heat generated by the conduction of the electrical current. The thermal management component comprises a material that undergoes a phase transition at a temperature above the temperature of the body in which the implantable device is adapted to be implanted.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 26, 2009
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Rafael Carbunaru, Kristen N. Jaax, Andrew Digiore, Brett Schleicher