Patents by Inventor Brian J. Brown

Brian J. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883923
    Abstract: A method of chemical mechanical polishing includes rotating a polishing pad about an axis of rotation, positioning a substrate against the polishing pad, the polishing pad having a groove that is concentric with the axis of rotation, oscillating the substrate laterally across the polishing pad such that a central portion of the substrate and an edge portion of the substrate are positioned over a polishing surface of the polishing pad for a first duration, and holding the substrate substantially laterally fixed in a position such that the central portion of the substrate is positioned over the polishing surface of the polishing pad and the edge portion of the substrate is positioned over the groove for a second duration.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Jianshe Tang, Brian J. Brown, Wei Lu, Priscilla Diep LaRosa
  • Publication number: 20240025006
    Abstract: A chemical mechanical polishing system includes a polishing a port to dispense polishing liquid onto a polishing pad and a liquid flow controller to control a flow rate of the polishing liquid to the port, a temperature control system to control a temperature of the polishing pad, and a control system. The control system is configured to obtain a baseline removal rate, a baseline temperature and a baseline polishing liquid flow rate. A function is stored relating removal rate to polishing liquid flow rate and temperature. The function is used to determine a reduced polishing liquid flow rate and an adjusted temperature such that a resulting removal rate is not below the baseline removal rate. The liquid flow controller is controlled to dispense the polishing liquid at the reduced polishing liquid flow rate and control the temperature control system so that the polishing process reaches the adjusted temperature.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: Haosheng Wu, Jianshe Tang, Brian J. Brown, Shih-Haur Shen, Shou-Sung Chang, Hari Soundararajan
  • Publication number: 20240017376
    Abstract: A chemical mechanical polishing system includes a support configured to hold a substrate face-up, a polishing article having a polishing surface smaller than an exposed surface of the substrate, a port for dispensing a polishing liquid, one or more actuators to bring the polishing surface into contact with a first portion of the exposed surface of the substrate and to generate relative motion between the substrate and the polishing pad and optically transmissive polymer window, an in-situ optical monitoring system, and a controller configured to receive a signal from the optical in-situ monitoring system and to modifying a polishing parameter based on the signal. The optical monitoring system includes a light source and a detector, the in-situ optical monitoring system configured to direct a light beam from above the support to impinge a non-overlapping second portion of the exposed surface of the substrate.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Brian J. Brown, Chirantha Rodrigo, Ekaterina A. Mikhaylichenko, Boguslaw A. Swedek, Thomas H. Osterheld, Dominic J. Benvegnu, Lakshmanan Karuppiah
  • Publication number: 20240017371
    Abstract: A chemical mechanical polishing system includes a support configured to hold a substrate face-up, a polishing article having a polishing surface smaller than an exposed surface of the substrate, a port for dispensing a polishing liquid, one or more actuators to bring the polishing surface into contact with a first portion of the exposed surface of the substrate and to generate relative motion between the substrate and the polishing pad and optically transmissive polymer window, an in-situ optical monitoring system, and a controller configured to receive a signal from the optical in-situ monitoring system and to modifying a polishing parameter based on the signal. The optical monitoring system includes a light source and a detector, the in-situ optical monitoring system configured to direct a light beam from above the support to impinge a non-overlapping second portion of the exposed surface of the substrate.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Brian J. Brown, Chirantha Rodrigo, Ekaterina A. Mikhaylichenko, Boguslaw A. Swedek, Thomas H. Osterheld, Dominic J. Benvegnu, Lakshmanan Karuppiah
  • Publication number: 20230390891
    Abstract: A chemical mechanical polishing apparatus includes a platen to support a polishing pad, a conditioner head to hold a conditioner disk in contact with the polishing pad, a motor to generate relative motion between the polishing pad and the conditioner disk so as to condition the polishing pad, an in-situ acoustic monitoring system having an acoustic sensor to receive acoustic signals from the conditioner disk, and a controller configured to analyze a signal from the acoustic sensor and determine a characteristic of the conditioner disk or conditioner head based on the signal.
    Type: Application
    Filed: September 23, 2022
    Publication date: December 7, 2023
    Inventors: Thomas H. Osterheld, Benjamin Cherian, Jun Qian, Haoquan Fang, Nicholas A. Wiswell, Sohrab Pourmand, Jeonghoon Oh, Brian J. Brown
  • Publication number: 20230390894
    Abstract: A polishing system including a platen to support a polishing pad, a carrier head to hold a substrate against the polishing pad, a source of dry ice particles, and a pad conditioner. The pad conditioner includes a compressor to generate a compressed gas stream, a mixer coupled to the source and the compressor to mix the dry ice particles with the compressed gas stream to form a stream of compressed gas with entrained dry ice particles, and a nozzle coupled to the mixer to direct the stream of compressed gas with entrained dry ice particles onto a polishing surface of the polishing pad at sufficient velocity to condition the polishing pad.
    Type: Application
    Filed: October 10, 2022
    Publication date: December 7, 2023
    Inventors: Jeonghoon Oh, Steven M. Zuniga, Brian J. Brown
  • Publication number: 20230390883
    Abstract: A chemical mechanical polishing apparatus includes a platen supporting a polishing pad, a carrier head to hold a surface of a substrate against the polishing pad, an acoustic sensor supported on the platen, and a motor to generate relative motion between the platen and the carrier head so as to polish the substrate. The carrier head includes a retaining ring for holding the substrate, and the acoustic sensor travels in a path below the carrier head and the retaining ring. A controller is configured to analyze a signal from the acoustic sensor and determine a characteristic of the retaining ring based on the signal.
    Type: Application
    Filed: October 6, 2022
    Publication date: December 7, 2023
    Inventors: Haoquan Fang, Thomas H. Osterheld, Benjamin Cherian, Jun Qian, Kun Xu, Sohrab Pourmand, Boguslaw A. Swedek, Jeonghoon Oh, Dominic J. Benvegnu, Brian J. Brown
  • Patent number: 11826872
    Abstract: A chemical mechanical polishing system includes a polishing a port to dispense polishing liquid onto a polishing pad and a liquid flow controller to control a flow rate of the polishing liquid to the port, a temperature control system to control a temperature of the polishing pad, and a control system. The control system is configured to obtain a baseline removal rate, a baseline temperature and a baseline polishing liquid flow rate. A function is stored relating removal rate to polishing liquid flow rate and temperature. The function is used to determine a reduced polishing liquid flow rate and an adjusted temperature such that a resulting removal rate is not below the baseline removal rate. The liquid flow controller is controlled to dispense the polishing liquid at the reduced polishing liquid flow rate and control the temperature control system so that the polishing process reaches the adjusted temperature.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Haosheng Wu, Jianshe Tang, Brian J. Brown, Shih-Haur Shen, Shou-Sung Chang, Hari Soundararajan
  • Patent number: 11823916
    Abstract: The present disclosure relates to load cups that include an annular substrate station configured to receive a substrate. The annular substrate station surrounds a nebulizer located within the load cup. The nebulizer includes a set of energized fluid nozzles disposed on an upper surface of the nebulizer adjacent to an interface between the annular substrate station and the nebulizer. The set of energized fluid nozzles are configured to release energized fluid at an upward angle relative to the upper surface.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: November 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Jimin Zhang, Jianshe Tang, Brian J. Brown
  • Publication number: 20230356355
    Abstract: Exemplary carrier heads for a chemical mechanical polishing apparatus may include a carrier body. The carrier heads may include a substrate mounting surface coupled with the carrier body. The carrier heads may include an inner ring that is sized and shaped to circumferentially surround a peripheral edge of a substrate positioned against the substrate mounting surface. The inner ring may be characterized by a first surface that faces the carrier body and a second surface opposite the first surface. The carrier heads may include at least one downforce control actuator disposed above the first surface of the inner ring at a discrete position about a circumference of the inner ring.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jeonghoon Oh, Brian J. Brown, Huanbo Zhang, Andrew Nagengast, Steven M. Zuniga, Ekaterina A. Mikhaylichenko, Eric L. Lau, Jay Gurusamy, David J. Lischka
  • Patent number: 11764069
    Abstract: Certain aspects of the present disclosure provide techniques for a method of removing material on a substrate. An exemplary method includes rotating a substrate about a first axis in a first direction and urging a surface of the substrate against a polishing surface of a polishing pad while rotating the substrate, wherein rotating the substrate about the first axis includes rotating the substrate a first angle at a first rotation rate, and then rotating the substrate a second angle at a second rotation rate, and the first rotation rate is different from the second rotation rate.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: September 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Brian J. Brown, Eric Lau, Ekaterina Mikhaylichenko, Jeonghoon Oh, Gerald J. Alonzo
  • Publication number: 20230290652
    Abstract: A method for removing particulates from a plurality of substrates includes opening a first access port in a top of a first container holding a cleaning fluid bath, inserting a first substrate through the first access port to a first support, closing the first access port, opening a second access port in the top of the first container, inserting a second substrate through the second access port to a second support, closing the second access port, opening the first access port, removing the first substrate through the first access port and delivering the first substrate into a rinsing station, closing the first access port, opening the second access port, removing the second substrate through the second access port and delivering the second substrate into the rinsing station, and closing the second access port.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 14, 2023
    Inventors: Brian J. Brown, Ekaterina A. Mikhaylichenko, Brian K. Kirkpatrick
  • Patent number: 11682567
    Abstract: A cleaning system for processing a substrate after polishing includes a sulfuric peroxide mix (SPM) module, at least two cleaning elements, and a plurality of robots. The SPM module includes a sulfuric peroxide mix (SPM) cleaner having a first container to hold a sulfuric peroxide mix liquid and five to twenty first supports to hold five to twenty substrates in the liquid in the first container, and a rinsing station having a second container to hold a rinsing liquid and five to twenty second supports to hold five to twenty substrates in the liquid in the second container. Each of the at least two cleaning elements are configured to process a single substrate at a time. Examples of a cleaning element include a megasonic cleaner, a rotating brush cleaner, a buff pad cleaner, a jet spray cleaner, a chemical spin cleaner, a spin drier, and a marangoni drier.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: June 20, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Brian J. Brown, Ekaterina A. Mikhaylichenko, Brian K. Kirkpatrick
  • Publication number: 20230178388
    Abstract: Cleaning chambers may include a substrate support having a substrate seating position. The cleaning chambers may include a plurality of fluid nozzles facing the substrate support. Each fluid nozzle of the plurality of fluid nozzles may define a fluid port characterized by a leading edge and a trailing edge. Each fluid nozzle of the plurality of fluid nozzles may be angled relative to the substrate seating position of the substrate support to produce an interior angle of greater than or about 90° at an intersection location across the substrate seating position for a fluid delivered from each fluid nozzle at the leading edge of the fluid port.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 8, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Brian K. Kirkpatrick, Ekaterina A. Mikhaylichenko, Brian J. Brown
  • Publication number: 20230054165
    Abstract: Exemplary slurry delivery assemblies may include a slurry fluid source. The assemblies may include a flurry delivery lumen having a lumen inlet and a lumen outlet. The lumen inlet may be fluidly coupled with an output of the slurry fluid source. The assemblies may include a deagglomeration tube fluidly coupled with the lumen outlet. The deagglomeration tube may include a tube inlet and a tube outlet. The assemblies may include one or more ultrasonic transducers coupled with the deagglomeration tube.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chih Chung Chou, Haosheng Wu, Jianshe Tang, Shou-Sung Chang, Brian J. Brown, Chad Pollard, Hari N. Soundararajan
  • Publication number: 20220379428
    Abstract: Certain aspects of the present disclosure provide techniques for a method of removing material on a substrate. An exemplary method includes rotating a substrate about a first axis in a first direction and urging a surface of the substrate against a polishing surface of a polishing pad while rotating the substrate, wherein rotating the substrate about the first axis includes rotating the substrate a first angle at a first rotation rate, and then rotating the substrate a second angle at a second rotation rate, and the first rotation rate is different from the second rotation rate.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: Jimin ZHANG, Brian J. BROWN, Eric LAU, Ekaterina MIKHAYLICHENKO, Jeonghoon OH, Gerald J. ALONZO
  • Publication number: 20220359219
    Abstract: A method of processing a substrate includes selectively dispensing a treatment fluid on a die-by-die basis to onto a substrate, and chemical mechanical polishing the substrate after dispensing the treatment fluid. The treatment fluid modifies a polishing rate of the chemical mechanical polishing at one or more selected die(s) to which the treatment fluid is applied in comparison to one or more remaining die(s) to which the treatment fluid is not applied.
    Type: Application
    Filed: May 2, 2022
    Publication date: November 10, 2022
    Inventors: Haosheng Wu, Shou-Sung Chang, Jianshe Tang, Brian J. Brown, Alexander John Fisher, Hari Soundararajan, Mayu Felicia Yamamura
  • Publication number: 20220339755
    Abstract: Embodiments herein relate to a retaining ring for use in a polishing process. The retaining ring includes an annular body having an upper surface and a lower surface. An inner surface is connected to the upper surface and the lower surface. The inner surface includes one or more surfaces that are used to retain a substrate during processing. The one or more surfaces have an angle relative to a central axis of the retaining ring. The inner surface also includes a plurality of facets. Channels are disposed within the retaining ring to allow passage of a polishing fluid from an inner surface to an outer surface of the retaining ring disposed opposite of the inner surface.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 27, 2022
    Inventors: Jeonghoon OH, Charles C. GARRETSON, Eric LAU, Andrew NAGENGAST, Steven M. ZUNIGA, Edwin C. SUAREZ, Huanbo ZHANG, Brian J. BROWN
  • Publication number: 20220281062
    Abstract: A polishing apparatus includes a support configured to receive and hold a substrate in a plane, a polishing pad affixed to a cylindrical surface of a rotary drum, a first actuator to rotate the drum about a first axis parallel to the plane, a second actuator to bring the polishing pad on the rotary drum into contact with the substrate, and a port for dispensing a polishing liquid to an interface between the polishing pad and the substrate.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 8, 2022
    Inventors: Ekaterina A. Mikhaylichenko, Fred C. Redeker, Brian J. Brown, Chirantha Rodrigo, Steven M. Zuniga, Jay Gurusamy
  • Publication number: 20220281053
    Abstract: Generating a recipe for controlling a polishing system includes receiving a target removal profile that includes a target thickness to remove for a plurality of locations on a substrate that are angularly distributed around the substrate, and storing a first function defining a polishing rate for a zone from a plurality of pressurizable zones of a carrier head that are angularly distributed around a the carrier head. The first function defines polishing rates as a function of pressures. For each particular zone of the plurality of zones a recipe defining a pressure for the particular zone over time is calculated by calculating an expected thickness profile after polishing using the first function, and minimizing a cost function that incorporates a first term representing a difference between the expected thickness profile and a target thickness profile.
    Type: Application
    Filed: February 25, 2022
    Publication date: September 8, 2022
    Inventors: Eric Lau, Charles C. Garretson, Huanbo Zhang, Zhize Zhu, Benjamin Cherian, Brian J. Brown, Thomas H. Osterheld