Patents by Inventor Brian Lee Tollison

Brian Lee Tollison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10981248
    Abstract: Hybrid welding methods include directing a laser beam from a laser onto a first component that is vertically offset from a second component, and, directing a weld arc from an arc welder onto a weld joint between the first component and the second component to weld the first and second components together.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: April 20, 2021
    Assignee: General Electric Company
    Inventors: Dechao Lin, Srikanth Chandrudu Kottilingam, Yan Cui, Brian Lee Tollison
  • Publication number: 20210071533
    Abstract: A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Publication number: 20210017868
    Abstract: A multi-piece part includes multiple pieces fabricated via different types of fabrication processes, wherein the multiple parts are configured to be coupled to one another to form the assembly. At least one of the multiple parts is fabricated via an additive manufacturing method. The multi-piece part also includes a holder assembly that couples and holds together the multiple pieces of the multi-piece part, wherein the holder assembly comprises a reversible, mechanical-type coupling.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Srikanth Chandrudu Kottilingam, David Edward Schick, Jon Conrad Schaeffer, Steven J. Barnell, Brian Lee Tollison, Yan Cui
  • Patent number: 10888892
    Abstract: A method of protecting a hole in a component during a coating process is disclosed. The method includes: placing a plug in the hole, the plug including a water insoluble core and a water soluble layer surrounding at least a portion of an outer surface of the metal core. A coating is applied over the plug and at least a portion of the component. The component is immersed in water to dissolve the water soluble layer, allowing removal of the water insoluble core. Removal of the coating from over the hole and the water insoluble core from within the hole may follow.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: January 12, 2021
    Assignee: General Electric Company
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Jonathan Matthew Lomas, Brian Lee Tollison
  • Patent number: 10830071
    Abstract: A multi-piece part includes multiple pieces fabricated via different types of fabrication processes, wherein the multiple parts are configured to be coupled to one another to form the assembly. At least one of the multiple parts is fabricated via an additive manufacturing method. The multi-piece part also includes a holder assembly that couples and holds together the multiple pieces of the multi-piece part, wherein the holder assembly comprises a reversible, mechanical-type coupling.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Srikanth Chandrudu Kottilingam, David Edward Schick, Jon Conrad Schaeffer, Steven J. Barnell, Brian Lee Tollison, Yan Cui
  • Patent number: 10786878
    Abstract: A method of welding a component and a treated component are provided. The method comprises an initial heat-treating of the component comprising a substrate. The method further comprises removing a portion of the substrate to form a treatment region comprising an exposed surface. The method further comprises buttering the exposed surface with a first filler additive to form a weld metal adjacent to the fusion line comprising an easy-to-weld alloy. The method further comprises welding the component with the easy-to-weld alloy and a second filler additive. The first filler additive comprises a sufficient amount of each of Co, Cr, Mo, Fe, Al, Ti, Mn, C and Ni to form the easy-to-weld alloy, when welded with the hard-to-weld base alloy.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: September 29, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Brian Lee Tollison
  • Patent number: 10767501
    Abstract: An article, a component, and a method of making a component are provided. The article includes a contoured proximal face and a contoured distal face. The contoured proximal face is arranged and disposed to substantially mirror a contour of an end wall of a component. The component includes a first end wall, a second end wall, and an article including a contoured proximal face secured to at least one of the first end wall and the second end wall. The method of making a component includes forming an article having a proximal face and a distal face, contouring the proximal face of the article to form a contoured proximal face that substantially mirrors a contour of a first end wall or a second end wall of the component, and securing the contoured proximal face of the article to one of the first end wall and the second end wall.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: September 8, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Joseph Anthony Weber, Srikanth Chandrudu Kottilingam, Brian Lee Tollison
  • Patent number: 10731483
    Abstract: A thermal management article is disclosed including a substrate and a first coating disposed on the substrate. The first coating includes a first coating surface and at least one passageway disposed between the substrate and the first coating surface. The at least one passageway defines at least one fluid pathway. A method for forming a thermal management article is disclosed including attaching at least one passageway to a substrate. The at least one passageway includes a passageway wall having a wall thickness and defines at least one fluid pathway. A first coating is applied to the substrate and the passageway wall, forming a first coating surface. The at least one passageway is disposed between the substrate and the first coating surface.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 4, 2020
    Assignee: General Electric Company
    Inventors: Srikanth Chandrudu Kottilingam, Jon Conrad Schaeffer, Brian Lee Tollison, Yan Cui, David Edward Schick
  • Publication number: 20200238415
    Abstract: A system includes a gas turbine component having a recessed portion with a recessed surface in a hard-to-weld (HTW) material. The system includes a plate disposed over the recessed portion. The plate has an easy-to-weld (ETW) material. The plate has an outer surface and an inner surface, and the inner surface faces the recessed portion. The system includes a braze material disposed within the recessed portion between the recessed surface and the inner surface of the plate. The braze material is configured to bond the recessed surface of the recessed portion with the inner surface of the plate when the braze material is heated to a brazing temperature. The system includes a filler material disposed on the outer surface of the plate disposed over the recessed portion. Application of the filler material to the outer surface of the plate is configured to heat the braze material to the brazing temperature.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: Yan Cui, Michael Arnett, Matthew Laylock, Brian Lee Tollison
  • Patent number: 10675686
    Abstract: A hybrid preform component including a plurality of elongated metallic cores and a coating paste is provided. The coating paste envelops the plurality of elongated metallic cores. The coating paste includes a first material having a first melting point, a second material having a second melting point, and a binder. A method for treating a component is also provided. The method includes the step of mixing a second material, a first material, and a binder to make coating paste. The method further includes the step of coating the plurality of cores using the coating paste to form a coated rod assembly. The method further includes the step of compressing the coated rod assembly to envelop the coating paste to the plurality of cores and form a preform component having a near net shape. The method further includes the step of sintering the preform component to form a pre-sintered preform.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 9, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Brian Lee Tollison, Timothy Neal Pletcher
  • Patent number: 10654120
    Abstract: A method includes heating a brazing material in a braze chamber of a first component to a braze temperature to melt the brazing material. The brazing material flows from the braze chamber, through at least one internal channel of the first component, and into a braze gap between the first component and a second component to braze the first component to the second component. A brazed article includes a first component having a braze chamber and at least one internal channel extending from the braze chamber to an external surface, a second component having at least one braze surface separated from the external surface of the first component by a braze gap, and a braze material in the braze gap. A braze assembly includes a first component, a second component, and a brazing material in the braze chamber.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 19, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yan Cui, Brian Leslie Henderson, Brian Lee Tollison, Srikanth Chandrudu Kottilingam
  • Publication number: 20200149407
    Abstract: A nozzle or blade for a turbomachine includes an airfoil body including at least one first coolant passage, and an edge opening in a leading edge or a trailing edge of the airfoil body. The edge opening has an edge coupon retention member seat in or on an inner surface of the airfoil body. An edge coupon has a shape at least partially configured for coupling to the edge opening in the airfoil body. The edge coupon includes an edge coupon body, at least one second coolant passage in the edge coupon body configured for fluid communication with the at least one first coolant passage in the airfoil body, and a retention member extending from the edge coupon body for coupling to the edge coupon retention member seat in the airfoil body.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Srikanth Chandrudu Kottilingam, Jon Conrad Schaeffer, Brian Lee Tollison
  • Publication number: 20200149134
    Abstract: A composition of matter includes from about 16 to about 20 wt % chromium, greater than 6 to about 10 wt % aluminum, from about 2 to about 10 wt % iron, less than about 0.04 wt % yttrium, less than about 12 wt % cobalt, less than about 1.0 wt % manganese, less than about 1.0 wt % molybdenum, less than about 1.0 wt % silicon, less than about 0.25 wt % carbon, about 0.03 wt % boron, less than about 1.0 wt % tungsten, less than about 1.0 wt % tantalum, about 0.5 wt % titanium, about 0.5 wt % hafnium, about 0.5 wt % rhenium, about 0.4 wt % lanthanide elements, and the balance being nickel and incidental impurities. This nickel-based superalloy composition may be used in superalloy articles, such as a blade, nozzle, a shroud, a splash plate, a squealer tip of the blade, and a combustor of a gas turbine engine.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Brad Wilson VanTassel
  • Publication number: 20200149403
    Abstract: A blade for a turbomachine, a tip for a blade of a turbomachine and a related method are disclosed. The blade may include a tip body having a shape at least partially configured for coupling to an airfoil body of the blade; at least one coolant passage in the tip body configured for fluid communication with at least one coolant passage in the airfoil body; and a retention member extending from the tip body for coupling to a tip retention member seat in the airfoil body. The tip can be replaced, allowing for changes in the coolant passages in the tip of a blade.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Srikanth Chandrudu Kottilingam, Jon Conrad Schaeffer, Brian Lee Tollison
  • Patent number: 10640849
    Abstract: A composition of matter includes from about 16 to about 20 wt % chromium, greater than 6 to about 10 wt % aluminum, from about 2 to about 10 wt % iron, less than about 0.04 wt % yttrium, less than about 12 wt % cobalt, less than about 1.0 wt % manganese, less than about 1.0 wt % molybdenum, less than about 1.0 wt % silicon, less than about 0.25 wt % carbon, about 0.03 wt % boron, less than about 1.0 wt % tungsten, less than about 1.0 wt % tantalum, about 0.5 wt % titanium, about 0.5 wt % hafnium, about 0.5 wt % rhenium, about 0.4 wt % lanthanide elements, and the balance being nickel and incidental impurities. This nickel-based superalloy composition may be used in superalloy articles, such as a blade, nozzle, a shroud, a splash plate, a squealer tip of the blade, and a combustor of a gas turbine engine.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Brad Wilson VanTassel
  • Patent number: 10625361
    Abstract: A method of welding a superalloy component includes the following sequential steps. A welding step for welding a cavity using a filler metal in an inert atmosphere, where the cavity is located in the component. A covering step for covering the filler metal and a portion of the component with a weld filler layer in the inert atmosphere. The weld filler layer has a greater ductility than material comprising the component and/or material comprising the filler metal. A second covering step for covering the weld filler layer with a braze material, and subsequently performing a brazing operation. A heat treating step heat treats the component.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 21, 2020
    Assignee: General Electric Company
    Inventors: Cem Murat Eminoglu, Yan Cui, Daniel James Dorriety, Brian Lee Tollison, Paul Albert Cook
  • Patent number: 10619499
    Abstract: A component including a channel and an insert is provided. The channel is configured to extend through a wall thickness of the component from an inner surface of the component to an outer surface of the component. The channel is defined by an inner channel surface. The insert is configured to permit flow cooling fluid such as air and has an outer insert surface corresponding to and attached to the inner channel surface. The component may be a turbine component. Also provided is a method for forming the component.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Srikanth Chandrudu Kottilingam, Brian Lee Tollison, Yan Cui
  • Patent number: 10618109
    Abstract: A process includes agitating at least one core of a core alloy together with a braze binder to form at least one coated core comprising the at least one core coated with a first layer of the braze binder. The process also includes agitating the at least one coated core together with a powder composition comprising a first metal powder of a first alloy and a second metal powder of a second alloy to form a green preform having a first powder composition layer of the first alloy and the second alloy. The process further includes sintering the green preform to form at least one hybrid pre-sintered preform. A green preform includes a core, a first layer of a braze binder coated on the core, and a powder composition coated on the first layer. A hybrid pre-sintered preform includes a core and a first layer sintered to the core.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Brian Lee Tollison, Brian Leslie Henderson
  • Patent number: 10610982
    Abstract: A method of making a weld filler metal for a superalloy for welding is disclosed. The method includes enclosing a welding rod in a first foil layer and sintering the welding rod and the first foil layer. Related processes and articles are also disclosed.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: April 7, 2020
    Assignee: General Electric Company
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Brian Lee Tollison
  • Patent number: 10598030
    Abstract: In some embodiments, a process treats a turbine component. The turbine component includes an article and a wear component brazed to the article. The process includes applying a braze tape on at least a portion of the wear component and thermal processing the turbine component while the braze tape is on the at least a portion of the wear component to treat the turbine component. In some embodiments, an assembly includes a turbine component. The turbine component includes an article and a pre-sintered preform brazed to a surface of the article. The assembly also includes a braze tape on at least a portion of the pre-sintered preform. In some embodiments, a treated turbine component includes a treated article and a pre-sintered preform brazed to a surface of the treated article. The treated turbine component has been thermally processed with the pre-sintered preform being substantially free of re-flow.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Srikanth Chandrudu Kottilingam, Yan Cui, Brian Lee Tollison