Patents by Inventor Brian R. Koch

Brian R. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072565
    Abstract: A battery charging system includes a charger that is dynamically controlled during charging, including during rapid charging events that include elevated voltage and/or elevated current levels. The charger is connectable to a battery cell of a rechargeable energy storage system. Operation includes transferring electric power having a charging current at a maximum charging rate to the battery cell. An anode potential offset setpoint is determined. A predicted anode potential offset is determined at an interface between the anode and the separator based upon the cell voltage for the battery cell. The charger is controlled to transfer the electric power to the battery cell based upon a temperature distribution in the battery cell and a difference between the anode potential offset setpoint and the predicted anode potential offset.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Han Zhang, Taylor R. Garrick, Brian J. Koch
  • Patent number: 11789219
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: October 17, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 11668994
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: June 6, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Patent number: 11585978
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 21, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20220173572
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Patent number: 11289877
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 29, 2022
    Assignee: Aurrion, Inc.
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Publication number: 20220003945
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 11150423
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: October 19, 2021
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Publication number: 20210278591
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 9, 2021
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20210215992
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, nonconductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 15, 2021
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Patent number: 11022751
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 1, 2021
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 10976637
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 13, 2021
    Assignee: Aurrion, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Publication number: 20200278496
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20200209496
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 10684413
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: June 16, 2020
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20200185876
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Patent number: 10620390
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: April 14, 2020
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 10608402
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: March 31, 2020
    Assignee: Aurrion, Inc.
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Publication number: 20190356107
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Patent number: 10436981
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: October 8, 2019
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish