Patents by Inventor Bruce Fletcher

Bruce Fletcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6991615
    Abstract: A grafted network including one or more graft segments for use in coronary bypass procedures and which are configured to operably transport bypass blood flow from a singular supply location to one or more delivery locations, and which is provided in combination with one or more multiple channel blood flow connectors for directing such bypass blood flow in the grafted network to one or more vascular members requiring restorative blood flow thereto. The grafted network also preferably includes one or more devices for operably maintaining the grafted network under relatively high internal fluid pressure so as to continuously supply selective vascular members with adequate bypass blood flow.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: January 31, 2006
    Assignee: CABG Medical, Inc.
    Inventors: Manuel A. Villafana, William E. Palmquist, Bruce Fletcher
  • Patent number: 6986751
    Abstract: A grafted network including one or more graft segments for use in coronary bypass procedures and which are configured to operably transport bypass blood flow from a singular supply location to one or more delivery locations in the grafted network is provided in combination with one or more multiple channel blood flow connectors for directing such bypass blood flow in the grafted network to one or more vascular members requiring restorative blood flow thereto. The grafted network also preferably includes one or more devices for operably maintaining the grafted network under relatively high internal fluid pressure so as to continuously supply selective vascular members with adequate bypass blood flow.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 17, 2006
    Assignee: CABG Medical, Inc.
    Inventors: Manuel A. Villafana, William E. Palmquist, Bruce Fletcher
  • Publication number: 20050033218
    Abstract: A grafted network including one or more graft segments for use in coronary bypass procedures and which are configured to operably transport bypass blood flow from a singular supply location to one or more delivery locations in the grafted network is provided in combination with one or more multiple channel blood flow connectors for directing such bypass blood flow in the grafted network to one or more vascular members requiring restorative blood flow thereto. The grafted network also preferably includes one or more devices for operably maintaining the grafted network under relatively high internal fluid pressure so as to continuously supply selective vascular members with adequate bypass blood flow.
    Type: Application
    Filed: October 31, 2003
    Publication date: February 10, 2005
    Inventors: Manuel Villafana, William Palmquist, Bruce Fletcher
  • Publication number: 20050033217
    Abstract: A grafted network including one or more graft segments for use in coronary bypass procedures and which are configured to operably transport bypass blood flow from a singular supply location to one or more delivery locations in the grafted network is provided in combination with one or more multiple channel blood flow connectors for directing such bypass blood flow in the grafted network to one or more vascular members requiring restorative blood flow thereto. The grafted network also preferably includes one or more devices for operably maintaining the grafted network under relatively high internal fluid pressure so as to continuously supply selective vascular members with adequate bypass blood flow.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 10, 2005
    Inventors: Manuel Villafana, William Palmquist, Bruce Fletcher
  • Publication number: 20050033219
    Abstract: A grafted network including one or more graft segments for use in coronary bypass procedures and which are configured to operably transport bypass blood flow from a singular supply location to one or more delivery locations, and which is provided in combination with one or more multiple channel blood flow connectors for directing such bypass blood flow in the grafted network to one or more vascular members requiring restorative blood flow thereto. The grafted network also preferably includes one or more devices for operably maintaining the grafted network under relatively high internal fluid pressure so as to continuously supply selective vascular members with adequate bypass blood flow.
    Type: Application
    Filed: August 2, 2004
    Publication date: February 10, 2005
    Inventors: Manuel Villafana, William Palmquist, Bruce Fletcher
  • Patent number: 6753288
    Abstract: Organolead compounds such as tetraethyllead are useful in catalyst compositions for the oxidative carbonylation of hydroxyaromatic compounds to diaryl carbonates. They are employed in combination with a Group 8, 9, or 10 metal such as palladium, or a compound thereof, and a bromide or chloride such as tetraethylammonium bromide.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: June 22, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Publication number: 20040057903
    Abstract: This invention relates to bifunctional detection agents useful for providing high-resolution, in vivo imaging of biochemical activity in a living organism. Methods of using these bifunctional detection agents may comprise administering them into a living organism, and then estimating the localization of the detection agent using one modality (i.e., MRI), while concurrently estimating the level of biological activity using a second modality (i.e., optical imaging). One of the bifunctional detection agents comprises a magnetic resonance component and an optical imaging component. The magnetic resonance component comprises a contrast agent that is always activated or “on”. The optical imaging component comprises an activatable contrast agent or dye that is activated or turned “on” only in the presence of a particular event.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Inventors: Ileana Hancu, Mohan Mark Amaratunga, Denyce Kramer Wicht, Paritosh Dhawale, Nadeem Ishaque, Faisal Ahmed Syud, Bruce Fletcher Johnson, Amy Casey Williams
  • Patent number: 6706908
    Abstract: The present invention provides a method and catalyst composition for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a combination of inorganic co-catalysts comprising at least one Group 4 metal source and at least one Group 11 metal source, an effective amount of at least one salt co-catalyst with an anion selected from the group consisting of carboxylate, benzoate, acetate, sulfate, and nitrate, wherein the carbonylation catalyst composition is free of a halide source.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 16, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson
  • Patent number: 6700009
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: March 2, 2004
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Patent number: 6700008
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 2, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr., Grigorii Lev Soloveichik
  • Patent number: 6566295
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Patent number: 6534432
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing zinc. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: March 18, 2003
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson
  • Publication number: 20030040428
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Application
    Filed: April 30, 2002
    Publication date: February 27, 2003
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Grigorii Lev Soloveichik
  • Publication number: 20030032830
    Abstract: Organolead compounds such as tetraethyllead are useful in catalyst compositions for the oxidative carbonylation of hydroxyaromatic compounds to diaryl carbonates. They are employed in combination with a Group 8, 9, or 10 metal such as palladium, or a compound thereof, and a bromide or chloride such as tetraethylammonium bromide.
    Type: Application
    Filed: June 6, 2002
    Publication date: February 13, 2003
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Patent number: 6514900
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: February 4, 2003
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, James Norman Cawse, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson, Grigorii Lev Soloveichik
  • Patent number: 6512134
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: January 28, 2003
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Publication number: 20030004053
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 2, 2003
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Publication number: 20020183539
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Application
    Filed: May 20, 2002
    Publication date: December 5, 2002
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Publication number: 20020177521
    Abstract: The present invention provides a method and catalyst composition for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a combination of inorganic co-catalysts comprising at least one Group 4 metal source and at least one Group II metal source, an effective amount of at least one salt co-catalyst with an anion selected from the group consisting of carboxylate, benzoate, acetate, sulfate, and nitrate, wherein the carbonylation catalyst composition is free of a halide source.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 28, 2002
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Bruce Fletcher Johnson
  • Publication number: 20020168292
    Abstract: Computerized systems and methods for planning, preparing, tracking, and analyzing a plurality of chemical reactions including a planner for planning how much of each of a plurality of materials is to be delivered to each of a plurality of reaction vessels; a delivery device for delivering a predetermined amount of each of the plurality of materials to each of the plurality of reaction vessels; a reaction device for reacting the plurality of materials disposed within each of the plurality of reaction vessels; a measuring device for testing and measuring the reacted contents of each of the plurality of reaction vessels; and an analyzer for analyzing the reacted contents of each of the plurality of reaction vessels to determine the amount of at least one component present in the reacted contents and to determine the relative performance of the materials disposed within each of the plurality of reaction vessels.
    Type: Application
    Filed: May 14, 2001
    Publication date: November 14, 2002
    Inventors: Donald Wayne Whisenhunt, James Norman Cawse, Bruce Fletcher Johnson, Tracey Marie Jordan, Ralph Joseph May, Eric Douglas Williams, Kirill Vladimirovich Shalyaev, Michael Jarlath Brennan, Carl Matthew Laurence Sundling, James Lawrence Spivack