Patents by Inventor Bruce Fletcher

Bruce Fletcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6201146
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: March 13, 2001
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, James Norman Cawse, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson, Grigorii Lev Soloveichik
  • Patent number: 6197991
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing lead and a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: March 6, 2001
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, James Norman Cawse, Bruce Fletcher Johnson, Grigorii Lev Soloveichik, John Yaw Ofori, Eric James Pressman
  • Patent number: 6191299
    Abstract: An improved method for producing an aromatic carbonate by reacting an aromatic hydroxy compound, carbon monoxide and oxygen in the presence of a catalyst system comprising at least one of palladium or a palladium compound; at least one lead compound; at least one halide source; and at least one desiccant, wherein the ratio of equivalents of lead co-catalyst relative to equivalents of palladium catalyst is optimized to increase reaction rate, as well as to allow production of aromatic carbonate in an economically feasible continuous process.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: February 20, 2001
    Assignee: General Electric Company
    Inventors: Eric James Pressman, Bruce Fletcher Johnson, Phillip Oscar Moreno, Richard Anthony Battista
  • Patent number: 6180812
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIII metal having an atomic number of at least 44, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; at least one carboxylic acid amide such as N-methylpyrrolidone or dimethylacetamide; and a cocatalyst which is a compound of one or more metals including copper, titanium, zinc, lead, cerium and manganese.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: January 30, 2001
    Assignee: General Electric Company
    Inventors: Bruce Fletcher Johnson, Grigorii Lev Soloveichik, Eric James Pressman, Kirill Vladimirovich Shalyaev
  • Patent number: 6172254
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIIIB metal, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; and a promoter compound which is at least one C2-8 aliphatic or C7-10 aromatic mono- or dinitrile, preferably acetonitrile or adiponitrile. The catalyst system also preferably contains a compound of a non-Group VIIIB metal, preferably lead.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: January 9, 2001
    Assignee: General Electric Company
    Inventors: Eric James Pressman, Grigorii Lev Soloveichik, Bruce Fletcher Johnson, Kirill Vladimirovich Shalyaev
  • Patent number: 6160154
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing copper. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: December 12, 2000
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson, Marsha Mottel Grade, Grigorii Lev Soloveichik, John Yaw Ofori, Eric James Pressman
  • Patent number: 6143914
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of a combination of inorganic co-catalysts containing manganese and nickel; manganese and iron; manganese and chromium; manganese and cerium; manganese and europium; manganese, cerium, and europium; manganese, iron, and europium; or manganese and thorium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various other inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: November 7, 2000
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson, Grigorii Lev Soloveichik, John Yaw Ofori, Eric James Pressman
  • Patent number: 6143913
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing zinc. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: November 7, 2000
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson
  • Patent number: 6114157
    Abstract: This invention pertains to a method of production of 4-hydroxybenzoic acid, with purification and recovery of 4-hydroxybenzoic acid directly from the fermentation medium of a cultured organism, in the presence of other chemical species. Ion exchange resin is used during the fermentation process to recover the chemical product without the necessity of separating the biomass from the fermentation supernatant by filtration after fermentation is complete and then treating the filtrate to recover the product. This reduces or eliminates the need for filtration steps and eliminates the need for energy-intensive water removal processes. Furthermore, the removal of the product during the fermentation dramatically increases the production of the product during the fermentation process. This method therefore can both increase the amount of product produced in a single fermentation run and reduce the per unit cost of its biocatalytic production.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: September 5, 2000
    Assignee: General Electric Company
    Inventors: Bruce Fletcher Johnson, Mohan Amaratunga, John Henry Lobos
  • Patent number: 6114564
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIII metal having an atomic number of at least 44, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; and at least one aliphatic polyether such as a polyethylene glycol dimethyl ether or a crown ether. The catalyst system also preferably contains a compound of another metal, preferably lead.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: September 5, 2000
    Assignee: General Electric Company
    Inventors: Eric James Pressman, Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Patent number: 6114563
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing bismuth. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: September 5, 2000
    Assignee: General Electric Co.
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson, Kirill Shalyaev
  • Patent number: 6030819
    Abstract: The present invention pertains to a method for economical biofermentative production of 4-hydroxybenzoic acid (PHB) using genetically engineered E. coli. According to the invention, a plasmid is provided which controls the overexpression of chorismate pyruvate lyase, the bacterial enzyme which catalyzes the production of PHB from chorismate. Mutant E. coli selected with a unique two-step screening assay to overproduce chorismate have been transformed with this plasmid, providing a biocatalyst that efficiently converts glucose to PHB.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: February 29, 2000
    Assignee: General Electric Company
    Inventors: Mohan Amaratunga, John Henry Lobos, Bruce Fletcher Johnson, Eric Douglas Williams