Patents by Inventor Bryan L. Buckalew

Bryan L. Buckalew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10014170
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved plating uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; and an ionically resistive ionically permeable element comprising a substantially planar substrate-facing surface and an opposing surface, wherein the element allows for flow of ionic current towards the substrate during electroplating, and wherein the element comprises a region having varied local resistivity. In one example the resistivity of the element is varied by varying the thickness of the element. In some embodiments the thickness of the element is gradually reduced in a radial direction from the edge of the element to the center of the element. The provided apparatus and methods are particularly useful for electroplating metal in WLP recessed features.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: July 3, 2018
    Assignee: Lam Research Corporation
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Lee Peng Chua, Aaron Berke, Robert Rash, Steven T. Mayer
  • Publication number: 20180105949
    Abstract: Methods and apparatus for electroplating material onto a substrate are provided. In many cases the material is metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a porous ionically resistive plate positioned near the substrate, the plate having a plurality of interconnecting 3D channels and creating a cross flow manifold defined on the bottom by the plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through channels in the plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Application
    Filed: October 31, 2017
    Publication date: April 19, 2018
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Patent number: 9899230
    Abstract: The embodiments disclosed herein pertain to novel methods and apparatus for removing material from a substrate. In certain embodiments, the method and apparatus are used to remove negative photoresist, though the disclosed techniques may be implemented to remove a variety of materials. In practicing the disclosed embodiments, a stripping solution may be introduced from an inlet to an internal manifold, sometimes referred to as a cross flow manifold. The solution flows laterally through a relatively narrow cavity between the substrate and the base plate. Fluid exits the narrow cavity at an outlet, which is positioned on the other side of the substrate, opposite the inlet and internal manifold. The substrate spins while in contact with the stripping solution to achieve a more uniform flow over the face of the substrate. In some embodiments, the base plate includes protuberances which operate to increase the flow rate (and thereby increase the local Re) near the face of the substrate.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, David Porter, Thomas A. Ponnuswamy
  • Publication number: 20180023209
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Application
    Filed: October 3, 2017
    Publication date: January 25, 2018
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Patent number: 9834852
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 5, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Publication number: 20170342590
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold between the channeled plate and substrate, and on the sides by a flow confinement ring. A seal may be provided between the bottom surface of a substrate holder and the top surface of an element below the substrate holder (e.g., the flow confinement ring). During plating, the apparatus may switch between a sealed state and an unsealed state, for example by lowering and lifting the substrate and substrate holder as appropriate to engage and disengage the seal. A higher level of applied current or applied voltage may be provided to the substrate when the apparatus is in the sealed state compared to the unsealed state.
    Type: Application
    Filed: January 23, 2017
    Publication date: November 30, 2017
    Inventors: Kari Thorkelsson, Jacob Lee Hiester, Yu Ding, Bryan L. Buckalew
  • Publication number: 20170342583
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold between the channeled plate and substrate, and on the sides by a flow confinement ring. A seal may be provided between the bottom surface of a substrate holder and the top surface of an element below the substrate holder (e.g., the flow confinement ring). During plating, fluid enters the cross flow manifold through channels in the channeled plate, and through a cross flow inlet, then exits at the cross flow exit, positioned opposite the cross flow inlet. The apparatus may switch between a sealed state and an unsealed state during electroplating, for example by lowering and lifting the substrate and substrate holder as appropriate to engage and disengage the seal.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 30, 2017
    Inventors: Kari Thorkelsson, Aaron Berke, Bryan L. Buckalew, Steven T. Mayer
  • Patent number: 9828688
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: November 28, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Publication number: 20170298532
    Abstract: Disclosed herein are systems and methods for electroplating nickel which employ substantially sulfur-free nickel anodes. The methods may include placing a semiconductor substrate in a cathode chamber of an electroplating cell having an anode chamber containing a substantially sulfur-free nickel anode, contacting an electrolyte solution having reduced oxygen concentration with the substantially sulfur-free nickel anode contained in the anode chamber, and electroplating nickel from the electrolyte solution onto the semiconductor substrate placed in the cathode chamber. The electroplating systems may include an electroplating cell having an anode chamber configured for holding a substantially sulfur-free nickel anode, a cathode chamber, and a substrate holder within the cathode chamber configured for holding a semiconductor substrate. The systems may also include an oxygen removal device arranged to reduce oxygen concentration in the electrolyte solution as it is flowed to the anode chamber.
    Type: Application
    Filed: July 3, 2017
    Publication date: October 19, 2017
    Inventor: Bryan L. Buckalew
  • Patent number: 9752248
    Abstract: Disclosed herein are methods of electroplating which may include placing a substrate, an anode, and an electroplating solution in an electroplating cell such that the substrate and the anode are located on opposite sides of a fluidically-permeable plate, setting the configuration of one or more seals which, when in their sealing configuration, substantially seal pores of the fluidically-permeable plate, and applying an electrical potential between the anode and the first substrate sufficient to cause electroplating on the first substrate such that the rate of electroplating in an edge region of the first substrate is affected by the configuration of the one or more seals. Also disclosed herein are apparatuses for electroplating which may include one or more seals for substantially sealing a subset of the pores in a fluidically-permeable plate whose sealing configuration affects a rate of electroplating in an edge region of the substrate.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 5, 2017
    Assignee: Lam Research Corporation
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Aaron Berke, James Isaac Fortner, Robert Rash
  • Patent number: 9746427
    Abstract: The embodiments herein relate to methods and apparatus for detecting whether unwanted metallic deposits are present on a bottom of a substrate holder used in an electroplating apparatus. The presence of such unwanted deposits is harmful to electroplating processes because the deposits scavenge current that is intended to cause electroplating on a substrate. When such current scavenging occurs, the electroplating results on the substrates are poor. For instance, features positioned near the edge of a substrate are likely to plate to an insufficient thickness. Further, where such current scavenging is great, the overall thickness of the material plated on the substrate may be too thin. As such, there is a need to detect when such unwanted deposits are present, such that plating under these poor conditions may be avoided. This detection will help preserve costly wafers.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 29, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Haiying Fu, Thomas Anand Ponnuswamy, Bryan L. Buckalew
  • Publication number: 20170243839
    Abstract: Systems and methods for achieving uniformity across a redistribution layer are described. One of the methods includes patterning a photoresist layer over a substrate. The patterning defines a region for a conductive line and a via disposed below the region for the conductive line. The method further includes depositing a conductive material in between the patterned photoresist layer, such that the conductive material fills the via and the region for the conductive line. The depositing causes an overgrowth of conductive material of the conductive line to form a bump of the conductive material over the via. The method also includes planarizing a top surface of the conductive line while maintaining the patterned photoresist layer present over the substrate. The planarizing is facilitated by exerting a horizontal shear force over the conductive line and the bump. The planarizing is performed to flatten the bump.
    Type: Application
    Filed: March 14, 2017
    Publication date: August 24, 2017
    Inventors: Bryan L. Buckalew, Thomas A. Ponnuswamy, Steven T. Mayer, Stephen J. Banik, II, Justin Oberst
  • Patent number: 9732434
    Abstract: Disclosed herein are systems and methods for electroplating nickel which employ substantially sulfur-free nickel anodes. The methods may include placing a semiconductor substrate in a cathode chamber of an electroplating cell having an anode chamber containing a substantially sulfur-free nickel anode, contacting an electrolyte solution having reduced oxygen concentration with the substantially sulfur-free nickel anode contained in the anode chamber, and electroplating nickel from the electrolyte solution onto the semiconductor substrate placed in the cathode chamber. The electroplating systems may include an electroplating cell having an anode chamber configured for holding a substantially sulfur-free nickel anode, a cathode chamber, and a substrate holder within the cathode chamber configured for holding a semiconductor substrate. The systems may also include an oxygen removal device arranged to reduce oxygen concentration in the electrolyte solution as it is flowed to the anode chamber.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: August 15, 2017
    Assignee: Lam Research Corporation
    Inventor: Bryan L Buckalew
  • Publication number: 20170175286
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Publication number: 20170148627
    Abstract: Disclosed are pre-wetting apparatus designs and methods for cleaning solid contaminants from substrates prior to through resist deposition of metal. In some embodiments, a pre-wetting apparatus includes a process chamber having a substrate holder, and at least one nozzle located directly above the wafer substrate and configured to deliver pre-wetting liquid (e.g., degassed deionized water) onto the substrate at a grazing angle of between about 5 and 45 degrees. In some embodiments the nozzle is a fan nozzle configured to deliver the liquid to the center of the substrate, such that the liquid first impacts the substrate in the vicinity of the center and then flows over the center of the substrate. In some embodiments the substrate is rotated unidirectionally or bidirectionally during pre-wetting with multiple accelerations and decelerations, which facilitate removal of contaminants.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Lee Peng Chua, Bryan L. Buckalew, Thomas Anand Ponnuswamy, Brian Paul Blackman, Chad Michael Hosack, Steven T. Mayer
  • Publication number: 20170137958
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 18, 2017
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Patent number: 9624592
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 18, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Patent number: 9613833
    Abstract: Disclosed are pre-wetting apparatus designs and methods for cleaning solid contaminants from substrates prior to through resist deposition of metal. In some embodiments, a pre-wetting apparatus includes a process chamber having a substrate holder, and at least one nozzle located directly above the wafer substrate and configured to deliver pre-wetting liquid (e.g., degassed deionized water) onto the substrate at a grazing angle of between about 5 and 45 degrees. In some embodiments the nozzle is a fan nozzle configured to deliver the liquid to the center of the substrate, such that the liquid first impacts the substrate in the vicinity of the center and then flows over the center of the substrate. In some embodiments the substrate is rotated unidirectionally or bidirectionally during pre-wetting with multiple accelerations and decelerations, which facilitate removal of contaminants.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 4, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Lee Peng Chua, Bryan L. Buckalew, Thomas Anand Ponnuswamy, Brian Blackman, Chad Michael Hosack, Steven T. Mayer
  • Patent number: 9607822
    Abstract: Certain embodiments herein relate to methods and apparatus for processing a partially fabricated semiconductor substrate in a remote plasma environment. The methods may be performed in the context of wafer level packaging (WLP) processes. The methods may include exposing the substrate to a reducing plasma to remove photoresist scum and/or oxidation from an underlying seed layer. In some cases, photoresist scum is removed through a series of plasma treatments involving exposure to an oxygen-containing plasma followed by exposure to a reducing plasma. In some embodiments, an oxygen-containing plasma is further used to strip photoresist from a substrate surface after electroplating. This plasma strip may be followed by a plasma treatment involving exposure to a reducing plasma. The plasma treatments herein may involve exposure to a remote plasma within a plasma treatment module of a multi-tool electroplating apparatus.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 28, 2017
    Assignee: Lam Research Corporation
    Inventors: Bryan L. Buckalew, Mark L. Rea
  • Patent number: 9587322
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 7, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew