Patents by Inventor Bryan P. Staker

Bryan P. Staker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11047005
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: June 29, 2021
    Assignee: APTON BIOSYSTEMS, INC.
    Inventors: Bryan P. Staker, Niandong Liu, Manohar R. Furtado, Rixun Fang, Norman Burns, Windsor Owens
  • Publication number: 20210087627
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 25, 2021
    Inventors: Bryan P. STAKER, Niandong LIU, Manohar R. FURTADO, Rixun FANG, Norman BURNS, Windsor OWENS
  • Publication number: 20210072233
    Abstract: Methods and systems are provided for small molecule analyte detection using digital signals, key encryption, and communications protocols. The methods provide detection of a large numbers of proteins, peptides, RNA molecules, and DNA molecules in a single optical or electrical detection assay within a large dynamic range.
    Type: Application
    Filed: December 26, 2019
    Publication date: March 11, 2021
    Inventors: Bryan P. STAKER, Niandong LIU, Bart Lee STAKER, Michael David MCLAUGHLIN
  • Publication number: 20200393691
    Abstract: Disclosed herein is a high throughput optical scanning device and methods of use. The optical scanning device and methods of use provided herein can allow high throughput scanning of a continuously moving object with a high resolution despite fluctuations in stage velocity. This can aid in high throughput scanning of a substrate, such as a biological chip comprising fluorophores. Also provided herein are improved optical relay systems and scanning optics.
    Type: Application
    Filed: January 14, 2020
    Publication date: December 17, 2020
    Inventors: Windsor OWENS, Bryan P. STAKER, Robert HARTLAGE, Edvinas ZIZMINSKAS, David STERN, Paul HEILMAN
  • Patent number: 10829816
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: November 10, 2020
    Assignee: APTON BIOSYSTEMS, INC.
    Inventors: Bryan P. Staker, Niandong Liu, Michael David McLaughlin, Bart Lee Staker
  • Publication number: 20200217850
    Abstract: Disclosed herein are methods of detecting at least one target biomolecule in at least one single cell comprising lysing the single cell or cells and performing a cell identification assay and target identification assay. Also disclosed herein are methods for preparing a sample for undergoing single cell analysis, wherein the single cell analysis comprises performing a cell identification assay and a target identification assay.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 9, 2020
    Inventors: Niandong LIU, Norman BURNS, Manohar R. FURTADO, Bryan P. STAKER
  • Publication number: 20200140933
    Abstract: The invention relates to methods and compositions for the detection and quantification of nucleotide sequence variants, such as genetic polymorphisms, with decreased error and increased sensitivity, including single molecule detection. Detection of genetic polymorphisms, including single nucleotide polymorphisms (SNPs), is highly useful for the study of physiology, disease, phylogeny and forensics. Current methods for the detection and identification of nucleic acid sequence variants, such as genetic polymorphisms, lack the sensitivity to accurately detect low incidence mutations sequence variants or alleles. Detection techniques for highly multiplexed single molecule identification and quantification of analytes using optical systems are disclosed. Analytes include, but are not limited to, nucleic acid, such as DNA and RNA molecules, with and without modifications.
    Type: Application
    Filed: March 20, 2018
    Publication date: May 7, 2020
    Inventors: Bryan P. STAKER, Niandong LIU, Manohar R. FURTADO, Rixun FANG
  • Publication number: 20200063200
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Application
    Filed: September 16, 2019
    Publication date: February 27, 2020
    Inventors: Bryan P. STAKER, Niandong LIU, Manohar R. FURTADO, Rixun FANG, Norman BURNS, Windsor OWENS
  • Publication number: 20190323080
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Bryan P. Staker, Niandong Liu, Manohar R. Furtado, Rixun Fang, Norman Burns, Windsor Owens
  • Patent number: 10378053
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: August 13, 2019
    Assignee: Apton Biosystems, Inc.
    Inventors: Bryan P. Staker, Niandong Liu, Manohar R. Furtado, Rixun Fang, Norman Burns, Windsor Owens
  • Publication number: 20180274028
    Abstract: Disclosed herein are methods and systems for detection and discrimination of optical signals from a densely packed substrate. These have broad applications for biomolecule detection near or below the diffraction limit of optical systems, including in improving the efficiency and accuracy of polynucleotide sequencing applications.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 27, 2018
    Inventors: Bryan P. Staker, Niandong Liu, Manohar R. Furtado, Rixun Fang, Norman Burns, Windsor Owens
  • Patent number: 9917990
    Abstract: An imaging system is provided wherein a positioning stage is translated with respect to an objective lens component and a scan mirror is repositioned while a two-dimensional image is made of a biochemical site on a substrate. In an example embodiment, an imaging system comprises a camera, an objective lens component, a positioning stage, and a scan mirror controllable by a servo system that synchronizes movement of the positioning stage and the tilting of the scan mirror so that the substrate image is maintained stable during imaging of the continuously moving positioning stage.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 13, 2018
    Assignee: Complete Genomics, Inc.
    Inventors: Bryan P. Staker, Craig E. Uhrich
  • Patent number: 9880089
    Abstract: An array chip design is provided where the chip includes a field region arranged with sites according to a first pitch and at least one track region having a one-dimensional site pattern arranged according to a second pitch that is less dense and is an integer multiple of the first pitch so that observation through pixel-based sensors using one-dimensional quad-cell averaging can be applied in the track region, thereby to attain alignment of the chip to pixel-based optical instrumentation with a higher density of sites.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 30, 2018
    Assignee: Complete Genomics, Inc.
    Inventors: Bryan P. Staker, Paul Heilman
  • Publication number: 20170289412
    Abstract: An imaging system is provided wherein a positioning stage is translated with respect to an objective lens component and a scan mirror is repositioned while a two-dimensional image is made of a biochemical site on a substrate. In an example embodiment, an imaging system comprises a camera, an objective lens component, a positioning stage, and a scan mirror controllable by a servo system that synchronizes movement of the positioning stage and the tilting of the scan mirror so that the substrate image is maintained stable during imaging of the continuously moving positioning stage.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 5, 2017
    Applicant: COMPLETE GENOMICS, INC.
    Inventors: BRYAN P. STAKER, CRAIG E. UHRICH
  • Publication number: 20170268999
    Abstract: An array chip useful for biochemical assays is provided wherein the chip includes a field region arranged with attachment sites according to a first pitch and at least one track region having a one-dimensional spot pattern arranged according to a second pitch that is less dense and is a non-integer multiple of the first pitch so that one-dimensional Moiré averaging may be applied in the track region, thereby to attain alignment of the chip to the optical instrumentation with a higher density of attachment sites.
    Type: Application
    Filed: June 2, 2017
    Publication date: September 21, 2017
    Applicant: Complete Genomics, Inc.
    Inventor: Bryan P. Staker
  • Patent number: 9671344
    Abstract: An array chip useful for biochemical assays is provided wherein the chip includes a field region arranged with attachment sites according to a first pitch and at least one track region having a one-dimensional spot pattern arranged according to a second pitch that is less dense and is a non-integer multiple of the first pitch so that one-dimensional Moiré averaging may be applied in the track region, thereby to attain alignment of the chip to the optical instrumentation with a higher density of attachment sites.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 6, 2017
    Assignee: Complete Genomics, Inc.
    Inventor: Bryan P. Staker
  • Patent number: 9628676
    Abstract: An imaging system is provided wherein a positioning stage is translated with respect to an objective lens component and a scan mirror is repositioned while a two-dimensional image is made of a biochemical site on a substrate. In an example embodiment, an imaging system comprises a camera, an objective lens component, a positioning stage, and a scan mirror controllable by a servo system that synchronizes movement of the positioning stage and the tilting of the scan mirror so that the substrate image is maintained stable during imaging of the continuously moving positioning stage.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 18, 2017
    Assignee: Complete Genomics, Inc.
    Inventors: Bryan P. Staker, Craig E. Uhrich
  • Publication number: 20170013220
    Abstract: Imaging systems are provided for high speed, high resolution imaging of biochemical materials. In an example embodiment, an imaging system comprises an objective lens component, a line generator, a digital camera, a positioning stage, and a scan mirror. The line generator generates a line of light that is scanned across a portion of a substrate that is mounted on the positioning stage. The positioning stage moves the substrate in a particular direction that is substantially normal to an optical axis of the objective lens component. The camera collects an image of the portion of the substrate through the objective lens component. The scan mirror moves in coordination with the positioning stage, while the line of light is being scanned across the portion of the substrate and the substrate is being moved in the particular direction, in order to keep the image still with respect to the camera while the image is being collected by the camera.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Applicant: Complete Genomics, Inc.
    Inventors: Bryan P. Staker, Craig E. Uhrich
  • Patent number: 9488823
    Abstract: Imaging systems are provided for high speed, high resolution imaging of biochemical materials. In an example embodiment, an imaging system comprises an objective lens component, a line generator, a digital camera, a positioning stage, and a scan mirror. The line generator generates a line of light that is scanned across a portion of a substrate that is mounted on the positioning stage. The positioning stage moves the substrate in a particular direction that is substantially normal to an optical axis of the objective lens component. The camera collects an image of the portion of the substrate through the objective lens component. The scan mirror moves in coordination with the positioning stage, while the line of light is being scanned across the portion of the substrate and the substrate is being moved in the particular direction, in order to keep the image still with respect to the camera while the image is being collected by the camera.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: November 8, 2016
    Assignee: Complete Genomics, Inc.
    Inventors: Bryan P. Staker, Craig E. Uhrich
  • Patent number: 9359641
    Abstract: In a genome sequencing system and methodology, a protocol is provided to achieve precise alignment and accurate registration of an image of a planar array of nanoballs subject to optical analysis. Precise alignment correcting for fractional offsets is achieved by correcting for errors in subperiod x-y offset, scale and rotation by use of minimization techniques and Moiré averaging. In Moiré averaging, magnification is intentionally set so that the pixel period of the imaging element is a noninteger multiple of the site period. Accurate registration is achieved by providing for pre-defined pseudo-random sets of sites, herein deletion or reserved sites, where nanoballs are prevented from attachment to the substrate so that the sites of the array can be used in a pattern matching scheme as registration markers for absolute location identification.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: June 7, 2016
    Assignee: COMPLETE GENOMICS, INC.
    Inventor: Bryan P. Staker