Patents by Inventor Byung-Chun Park

Byung-Chun Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190372115
    Abstract: A method for positive electrode active material for a secondary battery includes preparing a precursor by reacting a nickel raw material, a cobalt raw material and an M1 raw material; forming a first surface-treated layer including an oxide of Formula 2 below, on a surface of a core including a lithium composite metal oxide of Formula 1 below, by mixing the precursor with a lithium raw material and an M3 raw material, firing the resultant mixture; and forming a second surface-treated layer including a lithium compound of Formula 3 below, on the core with the first surface-treated layer formed thereon, LiaNi1?x?yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] wherein, in Formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Patent number: 10439216
    Abstract: The present invention provides a positive electrode active material for secondary battery and a secondary battery including the same. The positive electrode active material includes a core including a lithium composite metal oxide of Formula 1 below, a first surface-treated layer positioned on the surface of the core and including a lithium oxide of Formula 2 below, and a second surface treated layer positioned on the core or the first surface-treated layer and including a lithium compound of Formula 3. Thus, the present invention can improve capacity characteristics and output characteristics of a battery and also reduce the generation of gas, LiaNi1-x-yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] (in formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification).
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 8, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Publication number: 20190300382
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.
    Type: Application
    Filed: December 19, 2017
    Publication date: October 3, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Publication number: 20190288285
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery which includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), wherein a portion of nickel (Ni) sites of the lithium composite transition metal oxide is substituted with tungsten (W), and an amount of a lithium tungsten oxide remaining on surfaces of lithium composite transition metal oxide particles is 1,000 ppm or less.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 19, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Patent number: 10418634
    Abstract: Disclosed are a cathode active material for lithium secondary batteries including lithium-containing metal oxide particles; a first surface treatment layer formed on the surfaces of the lithium-containing metal oxide particles and including at least one compound selected from the group consisting of fluorine-doped metal oxides and fluorine-doped metal hydroxides; and a second surface treatment layer formed on a surface of the first surface treatment layer and including a fluorine copolymer, and a method of manufacturing the same.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: September 17, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Wang Mo Jung, Sang Seung Oh, Sungbin Park, Ji Hye Kim
  • Publication number: 20190252679
    Abstract: Disclosed are a precursor for preparation of a lithium composite transition metal oxide, a method for preparing the same and a lithium composite transition metal oxide obtained from the same. More particularly, the transition metal precursor which has a composition represented by Formula 1 below and is prepared in an aqueous transition metal solution, mixed with a transition metal-containing salt, including an alkaline material, the method for preparing the same and the lithium composite transition metal oxide obtained from the same are disclosed. MnaMb(OH1-x)2-yAy ??(1) wherein M is at least one selected form the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; A is at least one selected form the group consisting of anions of PO4, BO3, CO3, F and NO3, and 0.5?a?1.0; 0?b?0.5; a+b=1; 0<x<1.0; and 0?y?0.02.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Sang Min Park, Sun Sik Shin, Byung Chun Park, Hye Lim Jeon, Bo Ram Lee
  • Patent number: 10367197
    Abstract: The present invention relates to a positive active material for a lithium battery, a method of preparing the same, and a lithium battery including the same. More particularly, the present invention relates to a positive active material having excellent high-capacity and thermal stability, a method of preparing the same, and a lithium battery including the same.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: July 30, 2019
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Yang-Kook Sun, Byung-Chun Park
  • Patent number: 10355275
    Abstract: Disclosed are a precursor for preparation of a lithium composite transition metal oxide, a method for preparing the same and a lithium composite transition metal oxide obtained from the same. More particularly, the transition metal precursor which has a composition represented by Formula 1 below and is prepared in an aqueous transition metal solution, mixed with a transition metal-containing salt, including an alkaline material, the method for preparing the same and the lithium composite transition metal oxide obtained from the same are disclosed. MnaMb(OH1-x)2-yAy??(1) wherein M is at least one selected form the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; A is at least one selected form the group consisting of anions of PO4, BO3, CO3, F and NO3, and 0.5?a?1.0; 0?b?0.5; a+b=1; 0<x<1.0; and 0?y?0.02.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: July 16, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Sang Min Park, Sun Sik Shin, Byung Chun Park, Hye Lim Jeon, Bo Ram Lee
  • Patent number: 10347913
    Abstract: The present invention provides a method for preparing a core-shell structured particle, the method using a continuous Couette-Taylor crystallizer in which a core reactant inlet, a shell reactant inlet, and a product outlet are sequentially formed on an outer cylinder along a flow direction of a fluid flowing in a Couette-Taylor fluid passage between the outer cylinder and an inner cylinder, wherein a core particle is primarily formed in the fluid passage by a core reactant supplied through the core reactant inlet; a shell layer is formed on a surface of the core particle to cover the core particle by a shell reactant supplied through the shell reactant inlet; and a core-shell structured particle in which the shell layer is formed on the circumference of the core particle, is discharged to the outside through the product outlet.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: July 9, 2019
    Assignees: LG Chem, Ltd., University-Industry Cooperation Group of Kyung Hee University
    Inventors: Woo Sik Kim, Khuong Dien Thai, Byung Chun Park, Seong Hoon Kang, Wang Mo Jung, Hong Kyu Park
  • Publication number: 20190165362
    Abstract: The present invention relates to a positive electrode active material for a secondary battery, which includes a core including a lithium composite metal oxide, and a surface treatment layer which is disposed on the core and includes an amorphous oxide containing a lithium (Li) oxide, a boron (B) oxide, and an aluminum (Al) oxide, wherein an amount of a lithium by-product present on a surface of the positive electrode active material is less than 0.55 wt % based on a total weight of the positive electrode active material, and a method of preparing the same.
    Type: Application
    Filed: February 2, 2018
    Publication date: May 30, 2019
    Applicant: LG Chem, Ltd.
    Inventors: So Ra Baek, Ji Hye Kim, Tae Gu Yoo, Wang Mo Jung, Byung Chun Park
  • Publication number: 20190157658
    Abstract: The present invention provides a method of preparing a positive electrode active material for a secondary battery including preparing a first transition metal-containing solution including a nickel raw material, a cobalt raw material, and a manganese raw material and a second transition metal-containing solution including a nickel raw material, a cobalt raw material, and a manganese raw material in a concentration different from that of the first transition metal-containing solution; preparing a reaction solution, in which nickel manganese cobalt-based composite metal hydroxide particles are formed, by adding an ammonium cation-containing complexing agent and a basic compound as well as the second transition metal-containing solution to the first transition metal-containing solution and performing a co-precipitation reaction in a pH range of 11 to 13.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Seong Hoon Kang, Byung Chun Park, Ju Kyung Shin, Sang Min Park
  • Patent number: 10243201
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a core, a shell disposed to surround the core, and a buffer layer which is disposed between the core and the shell and includes pores and a three-dimensional network structure connecting the core and the shell, wherein, the core, the shell, and the three-dimensional network structure of the buffer layer each independently include a lithium nickel manganese cobalt-based composite metal oxide and at least one metallic element of the nickel, the manganese, and the cobalt has a concentration gradient that gradually changes in any one region of the core, the shell, and the entire positive electrode active material.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 26, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Seong Hoon Kang, Byung Chun Park, Ju Kyung Shin, Sang Min Park
  • Patent number: 10177376
    Abstract: Disclosed are a cathode active material including a lithium transition metal oxide based on at least one transition metal selected from the group consisting of Ni, Mn and Co, wherein at least one hetero element selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Bi, Zn and Zr is located at a surface portion of or inside the lithium transition metal oxide, and a secondary battery including the same. The cathode active material according to the present invention includes predetermined hetero elements at a surface thereof and therein, and, as such, a secondary battery based on the cathode active material may exhibit excellent high-speed charge characteristics and lifespan characteristics.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 8, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20180323423
    Abstract: The present disclosure relates to a method for producing a positive electrode for a secondary battery, the method including applying a composition for forming a positive electrode on a positive electrode current collector to form a positive electrode mixture layer, and rolling the positive electrode mixture layer such that the elongation of the positive electrode current collector is less than 1%, to produce a positive electrode.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Ji Hye Kim, Wang MO Jung, Byung Chun Park, Ji Hoon Ryu, Jung Min Han
  • Publication number: 20180294477
    Abstract: The present invention provides a positive electrode active material for secondary battery and a secondary battery including the same. The positive electrode active material includes a core including a lithium composite metal oxide of Formula 1 below, a first surface-treated layer positioned on the surface of the core and including a lithium oxide of Formula 2 below, and a second surface treated layer positioned on the core or the first surface-treated layer and including a lithium compound of Formula 3. Thus, the present invention can improve capacity characteristics and output characteristics of a battery and also reduce the generation of gas, LiaNi1-x-yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] (in formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification).
    Type: Application
    Filed: November 30, 2016
    Publication date: October 11, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Publication number: 20180287135
    Abstract: Provided are a positive electrode active material for a secondary battery which may exhibit excellent capacity and life characteristics when used in the battery by including a core, and a surface treatment layer disposed on a surface of the core, wherein the core is a secondary particle including a plurality of primary particles, the primary particles include a polycrystalline lithium composite metal oxide of Formula 1 having an average grain diameter of 50 nm to 200 nm, and the surface treatment layer includes a lithium oxide including lithium and at least one metal selected from the group consisting of boron (B), tungsten (W), hafnium (Hf), niobium (Nb), tantalum (Ta), molybdenum (Mo), silicon (Si), tin (Sn), and zirconium (Zr), and a secondary battery including the same, LiaNi1-x-yCoxM1yM3zM2wO2 ??[Formula 1] (in Formula 1, M1, M2, M3, a, x, y, z, and w are the same as those defined in the specification).
    Type: Application
    Filed: November 30, 2016
    Publication date: October 4, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Patent number: 10090522
    Abstract: Provided herein is a precursor of a transition metal oxide, including a core unit and a shell unit, wherein the core unit includes a compound of chemical formula 1 below, and the shell unit includes a compound of chemical formula 2 below.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: October 2, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Ho-Suk Shin, Byung-Chun Park, Sang-Min Park, Joo-Hong Jin
  • Publication number: 20180261842
    Abstract: The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material being a primary particle having a monolithic structure that includes a lithium composite metal oxide of Formula 1 below, wherein the primary particle has an average particle size (D50) of 2 ?m to 20 ?m and a Brunauer-Emmett-Teller (BET) specific surface area of 0.15 m2/g to 1.9 m2/g, and a secondary battery including the same.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 13, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Wang Mo Jung, Seong Hoon Kang, Ju Kyung Shin, Sang Min Park, Sang Wook Lee
  • Publication number: 20180254484
    Abstract: Provided is a lithium nickel complex oxide represented by Chemical Formula 1: LiwNiIIx1NiIIIx2MnyCozFdO2-d??<Chemical Formula 1> where x1+x2+y+z=1, 0.4?x1+x2?0.9, 0<y?0.6 and 0<z?0.6, 0.9?w?1.3, and 0<d?0.3.
    Type: Application
    Filed: May 2, 2018
    Publication date: September 6, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Sung Bin Park, Wang Mo Jung, Sang Seung Oh, Byung Chun Park
  • Publication number: 20180254511
    Abstract: The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material being a secondary particle that includes a primary particle having a rectangular parallelepiped shape, the rectangular parallelepiped having at least one portion of vertices and edges formed in a round shape that is convex outward, wherein 1% to 40% of a total surface area of the secondary particle has open porosity, and the primary particle includes a lithium composite metal oxide of Formula 1 herein so that intercalation and deintercalation of lithium are facilitated, elution of an active material-constituting metal element is suppressed, and excellent structural stability is exhibited, thereby decreasing resistance and improving output and lifespan characteristics when applied to a battery, and a secondary battery comprising the same.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 6, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Sang Min Park, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Ji Hoon Ryu, Sang Wook Lee