Patents by Inventor Byung-Chun Park

Byung-Chun Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180241036
    Abstract: The present invention provides a positive electrode active material for a secondary battery, a positive electrode for a secondary battery, and a secondary battery including the same, the positive electrode active material including a first lithium-nickel oxide particle having an average particle size (D50) of more than 8 ?m to 20 ?m or less, and a second lithium-nickel oxide particle having an average particle size (D50) of 8 ?m or less, wherein the first lithium-nickel oxide particle has a particle strength of 100 MPa to 250 MPa, the second lithium-nickel oxide particle has a particle strength of 50 MPa to 100 MPa, a ratio r of the strength of the first lithium-nickel oxide particle to the strength of the second lithium-nickel oxide particle satisfies Equation 1 set forth herein.
    Type: Application
    Filed: November 25, 2016
    Publication date: August 23, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho Jo, Sin Young Park, Wang Mo Jung, Byung Chun Park, So Ra Baek
  • Publication number: 20180233739
    Abstract: The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material including a lithium composite metal oxide particle represented by Formula 1 below, and a secondary battery including the same. LiaNi1?x?yCoxM1yM2zM3wO2??[Formula 1] In Formula 1, M1 is a metal element whose surface energy (?Esurf) calculated by Equation 1 below is ?0.5 eV or higher, M2 is a metal element whose surface energy (?Esurf) calculated by Equation 1 below is ?1.5 eV or higher and less than ?0.5 eV, M3 is a metal element whose surface energy (?Esurf) calculated by Equation 1 below is less than ?1.5 eV, and 1.0?a?1.5, 0<x?0.5, 0<z?0.05, 0.002?w?0.1, 0<x+y?0.7.
    Type: Application
    Filed: November 30, 2016
    Publication date: August 16, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun PARK, Wang Mo JUNG, Young Cheol CHOI, Ju Kyung SHIN, Sang Min PARK, Sang Wook LEE
  • Publication number: 20180212237
    Abstract: The present invention provides a positive electrode active material for a secondary battery and a secondary battery including the same, which includes a core; a shell located to surround the core; and a buffer layer located between the core and the shell, and including a three-dimensional network structure connecting the core and the shell and a pore, in which the core, the shell, and the three-dimensional network structure in the buffer layer each independently include a lithium nickel-manganese-cobalt-based composite metal oxide, and the positive electrode active material has a BET specific surface area of 0.2 m2/g to 0.5 m2/g, a porosity of 30 vol % or less, and an average particle size (D50) of 8 ?m to 15 ?m.
    Type: Application
    Filed: March 3, 2017
    Publication date: July 26, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Sang Min Park, Min Suk Kang
  • Publication number: 20180183046
    Abstract: Provided are a positive electrode active material having a concentration gradient in which concentrations of nickel and manganese are gradually changed from a center of a particle to a surface thereof, and a peak appears at 235° C. or more when heat flow of the positive electrode active material is measured by differential scanning calorimetry, a method of preparing the positive electrode active material, and a lithium secondary battery including the positive electrode active material.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 28, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Joo Hong Jin, Ju Kyung Shin, In Seong Ju, Wang Mo Jung, Byung Chun Park
  • Patent number: 9991514
    Abstract: Provided are a method of manufacturing a lithium nickel complex oxide including mixing a nickel-containing mixed transition metal precursor, a lithium compound, and a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, and heat treating the mixture, a lithium nickel complex oxide manufactured thereby, and a cathode active material including the lithium nickel complex oxide. The method of manufacturing a lithium nickel complex oxide according to an embodiment of the present invention may adjust a ratio of divalent nickel (NiII) to trivalent nickel (NiIII) by using a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, and thus, the method may improve capacity of a secondary battery.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: June 5, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Sung Bin Park, Wang Mo Jung, Sang Seung Oh, Byung Chun Park
  • Patent number: 9966600
    Abstract: Disclosed are a transition metal precursor for preparing a lithium composite transition metal oxide, a method for preparing the precursor, and a lithium composite transition metal oxide. The transition metal precursor includes a composite transition metal compound having a composition represented by Formula (1) and a Mn content of 60 to 85 mol %: NiaMbMn1-(a+b)(OH1-x)2??(1) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and period II transition metals, 0.15?a?0.3, 0?b?0.1 and 0<x<0.5. The lithium composite transition metal oxide has a composition represented by Formula (2) and a Mn content of 60 to 85 mol %: Li1+z[NiaMbMn1-(a+b)]2O4-yAy??(2) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr and period II transition metals, A is a monoanion or dianion, 0.15?a?0.3, 0.005?b?0.1, ?0.1?z?0.1 and 0?y?0.1.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: May 8, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20180097226
    Abstract: Provided are a cathode active material including lithium transition metal phosphate particles, wherein the lithium transition metal phosphate particles include a first secondary particle formed by agglomeration of two or more first primary particles, and a second secondary particle formed by agglomeration of two or more second primary particles in the first secondary particle, and a method of preparing the same. Since the cathode active material according to an embodiment of the present invention may include first primary particles and second primary particles having different average particle diameters, the exfoliation of the cathode active material from a cathode collector may be minimized and performance characteristics, such as high output characteristics and an increase in available capacity, of a secondary battery may be further improved. In addition, since the first secondary particles are porous, the secondary particles are collapsed and fractured due to rolling when used in a cathode.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park, Sung Bin Park
  • Patent number: 9905325
    Abstract: Disclosed is a transition metal precursor used for preparation of lithium composite transition metal oxide, the transition metal precursor comprising a composite transition metal compound represented by the following Formula 1: M(OH1?x)2?yAy/n??(1) wherein M comprises two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and second period transition metals; A comprises one or more anions except OH1?x; 0<x<0.5; 0.01?y?0.5; and n is an oxidation number of A. The transition metal precursor according to the present invention contains a specific anion. A lithium composite transition metal oxide prepared using the transition metal precursor comprises the anion homogeneously present on the surface and inside thereof, and a secondary battery based on the lithium composite transition metal oxide thus exerts superior power and lifespan characteristics, and high charge and discharge efficiency.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 27, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Ho Suk Shin, Sung-Kyun Chang, Seong Hoon Kang, Dong Hun Lee, Sang Min Park
  • Publication number: 20180048015
    Abstract: The present invention relates to a positive electrode active material for a secondary battery and a secondary battery including the same, wherein the positive electrode active material includes a core, a shell disposed to surround the core, and a buffer layer which is disposed between the core and the shell and includes pores and a three-dimensional network structure connecting the core and the shell, wherein the core, the shell, and the three-dimensional network structure of the buffer layer each independently includes a polycrystalline lithium composite metal oxide of Formula 1 including a plurality of grains, and the grains have an average grain diameter of 50 nm to 150 nm.
    Type: Application
    Filed: September 28, 2016
    Publication date: February 15, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Ji Hoon Ryu, Sang Min Park
  • Publication number: 20180047974
    Abstract: In the present invention is provided a positive electrode active material for a secondary battery, wherein the positive electrode active material includes a core including a lithium composite metal oxide, and a surface treatment layer positioned on the surface of the core, and the surface treatment layer includes a porous coordination polymer in which a central metal ion is coordinate-bonded with an organic ligand such that high electrode density may be exhibited when an electrode is manufactured, and consequently, battery properties may be significantly enhanced. Also provided are a positive electrode, which is for a secondary battery and includes the positive electrode active material, and a secondary battery.
    Type: Application
    Filed: November 24, 2016
    Publication date: February 15, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho JO, Sin Young PARK, Wang Mo JUNG, Byung Chun PARK, So Ra BAEK
  • Patent number: 9887420
    Abstract: Provided are lithium transition metal composite particle including a lithium transition metal oxide particle, a metal-doped layer formed by doping the lithium transition metal oxide particle, and LiF formed on the lithium transition metal oxide particle including the metal-doped layer, a preparation method thereof, and a lithium secondary battery including the lithium transition metal composite particles.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 6, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Sung Bin Park, Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park
  • Patent number: 9871246
    Abstract: Provided are a cathode active material including lithium transition metal phosphate particles, wherein the lithium transition metal phosphate particles include a first secondary particle formed by agglomeration of two or more first primary particles, and a second secondary particle formed by agglomeration of two or more second primary particles in the first secondary particle, and a method of preparing the same. Since the cathode active material according to an embodiment of the present invention may include first primary particles and second primary particles having different average particle diameters, the exfoliation of the cathode active material from a cathode collector may be minimized and performance characteristics, such as high output characteristics and an increase in available capacity, of a secondary battery may be further improved. In addition, since the first secondary particles are porous, the secondary particles are collapsed and fractured due to rolling when used in a cathode.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 16, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park, Sung Bin Park
  • Publication number: 20180013129
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a core, a shell disposed to surround the core, and a buffer layer which is disposed between the core and the shell and includes pores and a three-dimensional network structure connecting the core and the shell, wherein, the core, the shell, and the three-dimensional network structure of the buffer layer each independently include a lithium nickel manganese cobalt-based composite metal oxide and at least one metallic element of the nickel, the manganese, and the cobalt has a concentration gradient that gradually changes in any one region of the core, the shell, and the entire positive electrode active material.
    Type: Application
    Filed: June 17, 2016
    Publication date: January 11, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Seong Hoon Kang, Byung Chun Park, Ju Kyung Shin, Sang Min Park
  • Patent number: 9799878
    Abstract: Disclosed are a cathode active material for high voltage and a lithium secondary battery including the same. More particularly, a cathode active material including spinel-type compound particles having a composition represented by Formula 1 below; Li1+aMxMn2?xO4?zAz??(1) where a, x and z are defined in a specification of the present invention, and metal oxides or metal hydroxides present on surfaces of the spinel-type compound particles, and a lithium secondary battery including the same.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: October 24, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Minsuk Kang, Seong Hoon Kang, Ho Suk Shin, Byung Chun Park, Sang Min Park, Geungi Min
  • Publication number: 20170301916
    Abstract: Provided herein is a precursor of a transition metal oxide, including a core unit and a shell unit, wherein the core unit includes a compound of chemical formula 1 below, and the shell unit includes a compound of chemical formula 2 below.
    Type: Application
    Filed: November 2, 2015
    Publication date: October 19, 2017
    Applicant: LG Chem, Ltd.
    Inventors: Ho-Suk Shin, Byung-Chun Park, Sang-Min Park, Joo-Hong Jin
  • Publication number: 20170294645
    Abstract: Provided is a precursor of transition metal oxide represented by chemical formula 1 below.
    Type: Application
    Filed: November 2, 2015
    Publication date: October 12, 2017
    Applicant: LG Chem, Ltd.
    Inventors: Ho-Suk Shin, Byung-Chun Park, Jae-Hyun Lee
  • Publication number: 20170222221
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery, a method for preparing the same and a lithium secondary battery including the same, the positive electrode active material includes a core including a first lithium complex metal oxide, and a shell located surrounding the core and including a second lithium complex metal oxide, and further includes a buffer layer located between the core and the shell, wherein the buffer layer includes a pore, and a three-dimensional network structure of a third lithium complex metal oxide which is connecting the core and the shell, and accordingly, minimizing destruction of the active material caused by a rolling process during the electrode preparation, and maximizing reactivity with an electrolyte liquid.
    Type: Application
    Filed: October 28, 2015
    Publication date: August 3, 2017
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Hong Kyu Park, Wang Mo Jung, Seong Hoon Kang
  • Patent number: 9608267
    Abstract: Disclosed is a precursor for preparing a lithium composite transition metal oxide. More particularly, a transition metal precursor, including a composite transition metal compound represented by Formula 1 below, used to prepare a lithium transition metal oxide: NiaMbMn1?(a+b)(O1?x)2??(1) wherein M is at least one selected form the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; and 0.2?a?0.25, 0?b?0.1, and 0<x<0.5.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: March 28, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Patent number: 9601770
    Abstract: Disclosed are a transition metal precursor for preparation of a lithium composite transition metal oxide, the transition metal precursor including a composite transition metal compound represented by Formula 1 below and a hydrocarbon compound, and a method of preparing the same: MnaMb(OH1-x)2??(1) wherein M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr, and second period transition metals; 0.4?a?1; 0?b?0.6; a+b?1; and 0?x?0.5, in which the transition metal precursor includes a particular composite transition metal compound and a hydrocarbon compound, and thus, when a lithium composite transition metal oxide is prepared using the same, carbon may be present in lithium transition metal oxide particles and/or on surfaces thereof, whereby a secondary battery including the lithium composite transition metal oxide exhibits excellent rate characteristics and long lifespan.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: March 21, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Sun Sik Shin, Sang Min Park, Ho Suk Shin, Hye Lim Jeon, Bo Ram Lee
  • Patent number: 9590242
    Abstract: Disclosed are precursor particles of a lithium composite transition metal oxide for lithium secondary batteries, wherein the precursor particles of a lithium composite transition metal oxide are composite transition metal hydroxide particles including at least two transition metals and having an average diameter of 1 ?m to 8 ?m, wherein the composite transition metal hydroxide particles exhibit monodisperse particle size distribution and have a coefficient of variation of 0.2 to 0.7, and a cathode active material including the same.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: March 7, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Seong Hoon Kang, Byung Chun Park, Ho Suk Shin, Sang Min Park, Hong Kyu Park