Patents by Inventor Chandra M. Jha

Chandra M. Jha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865521
    Abstract: A copper nanorod thermal interface material (TIM) is described. The copper nanorod TIM includes a plurality of copper nanorods having a first end thermally coupled with a first surface, and a second end extending toward a second surface. A plurality of copper nanorod branches are formed on the second end. The copper nanorod branches are metallurgically bonded to a second surface. The first surface may be the back side of a die. The second surface may be a heat spread or a second die. The TIM may include a matrix material surrounding the copper nanorods. In an embodiment, the copper nanorods are formed in clusters.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Chandra M. Jha, Feras Eid, Johanna M. Swan, Ashish Gupta
  • Publication number: 20170133296
    Abstract: A copper nanorod thermal interface material (TIM) is described. The copper nanorod TIM includes a plurality of copper nanorods having a first end thermally coupled with a first surface, and a second end extending toward a second surface. A plurality of copper nanorod branches are formed on the second end. The copper nanorod branches are metallurgically bonded to a second surface. The first surface may be the back side of a die. The second surface may be a heat spread or a second die. The TIM may include a matrix material surrounding the copper nanorods. In an embodiment, the copper nanorods are formed in clusters.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Chandra M. Jha, Feras EID, Johanna M. SWAN, Ashish GUPTA
  • Patent number: 9601406
    Abstract: A copper nanorod thermal interface material (TIM) is described. The copper nanorod TIM includes a plurality of copper nanorods having a first end thermally coupled with a first surface, and a second end extending toward a second surface. A plurality of copper nanorod branches are formed on the second end. The copper nanorod branches are metallurgically bonded to a second surface. The first surface may be the back side of a die. The second surface may be a heat spread or a second die. The TIM may include a matrix material surrounding the copper nanorods. In an embodiment, the copper nanorods are formed in clusters.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 21, 2017
    Assignee: Intel Corporation
    Inventors: Chandra M. Jha, Feras Eid, Johanna M. Swan, Ashish Gupta
  • Patent number: 9530718
    Abstract: A die backside film including a matrix material; and an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles. A method including introducing a die backside film on a backside surface of a die, the die backside film including a matrix material including an elastomer an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles; and disposing the die in a package.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: December 27, 2016
    Assignee: Intel Corporation
    Inventors: Hitesh Arora, Mihir A. Oka, Chandra M. Jha
  • Publication number: 20140246770
    Abstract: A copper nanorod thermal interface material (TIM) is described. The copper nanorod TIM includes a plurality of copper nanorods having a first end thermally coupled with a first surface, and a second end extending toward a second surface. A plurality of copper nanorod branches are formed on the second end. The copper nanorod branches are metallurgically bonded to a second surface. The first surface may be the back side of a die. The second surface may be a heat spread or a second die. The TIM may include a matrix material surrounding the copper nanorods. In an embodiment, the copper nanorods are formed in clusters.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Chandra M. Jha, Feras Eid, Johanna M. Swan, Ashish Gupta
  • Publication number: 20140177194
    Abstract: A die backside film including a matrix material; and an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles. A method including introducing a die backside film on a backside surface of a die, the die backside film including a matrix material including an elastomer an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles; and disposing the die in a package.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Hitesh Arora, Mihir A. Oka, Chandra M. Jha