Patents by Inventor Charles C Garretson

Charles C Garretson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9138860
    Abstract: Embodiments described herein use closed-loop control (CLC) of conditioning sweep to enable uniform groove depth removal across the pad, throughout pad life. A sensor integrated into the conditioning arm enables the pad stack thickness to be monitored in-situ and in real time. Feedback from the thickness sensor is used to modify pad conditioner dwell times across the pad surface, correcting for drifts in the pad profile that may arise as the pad and disk age. Pad profile CLC enables uniform reduction in groove depth with continued conditioning, providing longer consumables lifetimes and reduced operating costs.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 22, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivakumar Dhandapani, Jun Qian, Christopher D. Cocca, Jason G. Fung, Shou-Sung Chang, Charles C. Garretson, Gregory E. Menk, Stan D. Tsai
  • Patent number: 9017138
    Abstract: A load cup apparatus for transferring a substrate in a processing system includes a pedestal assembly having a substrate support, an actuator, and a controller. The actuator is configured to move the pedestal assembly into a loading position in contact with a retaining ring of a carrier head and to generate a retaining ring thickness signal based on a distance travelled by the pedestal assembly. The controller is configured to receive the retaining ring thickness signal from the actuator.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Thomas H. Osterheld, Charles C. Garretson, Jason Garcheung Fung
  • Publication number: 20140273749
    Abstract: A method for controlling the residue clearing process of a chemical mechanical polishing (“CMP”) process is provided. Dynamic in-situ profile control (“ISPC”) is used to control polishing before residue clearing starts, and then a new polishing recipe is dynamically calculated for the clearing process. Several different methods are disclosed for calculating the clearing recipe. First, in certain implementations when feedback at T0 or T1 methods are used, a post polishing profile and feedback offsets are generated in ISPC software. Based on the polishing profile and feedback generated from ISPC before the start of the clearing process, a flat post profile after clearing is targeted. The estimated time for the clearing step may be based on the previously processed wafers (for example, a moving average of the previous endpoint times). The calculated pressures may be scaled to a lower (or higher) baseline pressure for a more uniform clearing.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 18, 2014
    Inventors: Jun QIAN, Sivakumar DHANDAPANI, Benjamin CHERIAN, Thomas H. OSTERHELD, Charles C. GARRETSON
  • Patent number: 8758085
    Abstract: Apparatus and methods for conditioning a polishing pad in a CMP system are provided. In one embodiment, a method includes performing a pre-polish process including urging a conditioner disk against a polishing surface of a polishing pad disposed in a polishing station, moving the conditioner disk relative to the polishing pad in a sweep pattern across the polishing surface while monitoring a rotational force value required to move the conditioner disk relative to the polishing pad, determining a metric indicative of an interaction between the conditioner disk and the polishing surface from the rotational force value, adjusting a polishing recipe in response to the metric, and polishing one or more substrates using the adjusted polishing recipe.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: June 24, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Sivakumar Dhandapani, Asheesh Jain, Charles C. Garretson, Gregory E. Menk, Stan D. Tsai
  • Patent number: 8755927
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: June 17, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20140053981
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Daniel Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Patent number: 8585468
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20130273812
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Application
    Filed: June 17, 2013
    Publication date: October 17, 2013
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20130203321
    Abstract: A load cup apparatus for transferring a substrate in a processing system includes a pedestal assembly having a substrate support, an actuator, and a controller. The actuator is configured to move the pedestal assembly into a loading position in contact with a retaining ring of a carrier head and to generate a retaining ring thickness signal based on a distance travelled by the pedestal assembly. The controller is configured to receive the retaining ring thickness signal from the actuator.
    Type: Application
    Filed: January 24, 2013
    Publication date: August 8, 2013
    Inventors: Hung Chih Chen, Thomas H. Osterheld, Charles C. Garretson, Jason Garcheung Fung
  • Patent number: 8467896
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: June 18, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20130122783
    Abstract: A method and apparatus for conditioning a polishing pad in a CMP system is provided. In one embodiment, a method for conditioning a polishing pad includes applying a down force to the conditioning disk that urges the conditioning disk against the polishing pad, measuring a torque required to sweep the conditioning disk across the polishing pad, determining a change in down force by comparing the measured torque to a model force profile (MFP), and adjusting the down force that the conditioning disk applies against the polishing pad in response to the determined change.
    Type: Application
    Filed: April 13, 2011
    Publication date: May 16, 2013
    Applicant: APPLIED MATERIALS, INC
    Inventors: Gregory E. Menk, Stan D. Tsai, Sang J. Cho, Slvakumar Dhandapani, Christopher D. Cocca, Jason G. Fung, Shou-Sung Chang, Charles C. Garretson
  • Patent number: 8337279
    Abstract: A method and apparatus for conditioning a polishing pad is provided. The conditioning element is held by a conditioning arm rotatably mounted to a base at a pivot point. An actuator pivots the arm about the pivot point. The conditioning element is urged against the surface of the polishing pad, and translated with respect to the polishing pad to remove material from the polishing pad and roughen its surface. The interaction of the abrasive conditioning surface with the polishing pad surface generates a frictional force. The frictional force may be monitored by monitoring the torque applied to the pivot point, and material removal controlled thereby. The conditioning time, down force, translation rate, or rotation of the conditioning pad may be adjusted based on the measured torque.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: December 25, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Sivakumar Dhandapani, Stan D. Tsai, Daxin Mao, Sameer Deshpande, Shou-Sung Chang, Gregory E. Menk, Charles C. Garretson, Jason Garcheung Fung, Christopher D. Cocca, Hung Chih Chen
  • Publication number: 20120231701
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q. Lee
  • Patent number: 8190285
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: May 29, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q Lee
  • Publication number: 20120100779
    Abstract: Apparatus and methods for conditioning a polishing pad in a CMP system are provided. In one embodiment, a method includes performing a pre-polish process including urging a conditioner disk against a polishing surface of a polishing pad disposed in a polishing station, moving the conditioner disk relative to the polishing pad in a sweep pattern across the polishing surface while monitoring a rotational force value required to move the conditioner disk relative to the polishing pad, determining a metric indicative of an interaction between the conditioner disk and the polishing surface from the rotational force value, adjusting a polishing recipe in response to the metric, and polishing one or more substrates using the adjusted polishing recipe.
    Type: Application
    Filed: July 7, 2011
    Publication date: April 26, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sivakumar Dhandapani, Asheesh Jain, Charles C. Garretson, Gregory E. Menk, Stan D. Tsai
  • Publication number: 20120071067
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Patent number: 8066551
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20110281501
    Abstract: A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jun Qian, Charles C. Garretson, Sivakumar Dhandapani, Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20110256812
    Abstract: Embodiments described herein use closed-loop control (CLC) of conditioning sweep to enable uniform groove depth removal across the pad, throughout pad life. A sensor integrated into the conditioning arm enables the pad stack thickness to be monitored in-situ and in real time. Feedback from the thickness sensor is used to modify pad conditioner dwell times across the pad surface, correcting for drifts in the pad profile that may arise as the pad and disk age. Pad profile CLC enables uniform reduction in groove depth with continued conditioning, providing longer consumables lifetimes and reduced operating costs.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 20, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sivakumar Dhandapani, Jun Qian, Christopher D. Cocca, Jason G. Fung, Shou-Sung Chang, Charles C. Garretson, Gregory E. Menk, Stan D. Tsai
  • Publication number: 20110195639
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong