Patents by Inventor Chen-Nan Yeh

Chen-Nan Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110193144
    Abstract: A semiconductor device includes a semiconductor substrate; a gate stack overlying the substrate, a spacer formed on sidewalls of the gate stack, and a protection layer overlying the gate stack for filling at least a portion of a space surrounded by the spacer and the top surface of the gate stack. A top surface of the spacer is higher than a top surface of the gate stack.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sey-Ping Sun, Tsung-Lin Lee, Chin-Hsiang Lin, Chih-Hao Chang, Chen-Nan Yeh, Chao-An Jong
  • Publication number: 20110171805
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Application
    Filed: February 15, 2011
    Publication date: July 14, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7977772
    Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
  • Patent number: 7939889
    Abstract: A semiconductor structure includes a semiconductor fin on a top surface of a substrate, wherein the semiconductor fin includes a middle section having a first width; and a first and a second end section connected to opposite ends of the middle section, wherein the first and the second end sections each comprises at least a top portion having a second width greater than the first width. The semiconductor structure further includes a gate dielectric layer on a top surface and sidewalls of the middle section of the semiconductor fin; and a gate electrode on the gate dielectric layer.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: May 10, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yu-Rung Hsu, Chen-Nan Yeh, Cheng-Hung Chang
  • Publication number: 20110092019
    Abstract: A method for an integrated circuit structure includes providing a semiconductor substrate; forming a metallization layer over the semiconductor substrate; forming a first dielectric layer between the semiconductor substrate and the metallization layer; forming a second dielectric layer between the semiconductor substrate and the metallization layer, wherein the second dielectric layer is over the first dielectric layer; and forming a contact plug with an upper portion substantially in the second dielectric layer and a lower portion substantially in the first dielectric layer. The contact plug is electrically connected to a metal line in the metallization layer. The contact plug is discontinuous at an interface between the upper portion and the lower portion.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Chih-Hsiang Yao, Wen-Kai Wan, Jye-Yen Cheng
  • Patent number: 7910994
    Abstract: System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7902035
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: March 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7892909
    Abstract: A method for forming a semiconductor structure includes providing a semiconductor substrate; forming a gate dielectric layer on the semiconductor substrate; forming a first silicon-containing layer on the gate dielectric layer, wherein the first silicon-containing layer is substantially free from p-type and n-type impurities; forming a second silicon-containing layer over the first silicon-containing layer, wherein the second silicon-containing layer comprises an impurity; and performing an annealing to diffuse the impurity in the second silicon-containing layer into the first silicon-containing layer.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ding-Yuan Chen, Chu-Yun Fu, Liang-Gi Yao, Chen-Nan Yeh
  • Publication number: 20110037129
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Application
    Filed: October 26, 2010
    Publication date: February 17, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7880303
    Abstract: An integrated circuit structure includes a semiconductor substrate; a metallization layer over the semiconductor substrate; a first dielectric layer between the semiconductor substrate and the metallization layer; a second dielectric layer between the semiconductor substrate and the metallization layer, wherein the second dielectric layer is over the first dielectric layer; and a contact plug with an upper portion substantially in the second dielectric layer and a lower portion substantially in the first dielectric layer. The contact plug is electrically connected to a metal line in the metallization layer. The contact plug is discontinuous at an interface between the upper portion and the lower portion.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Chih-Hsiang Yao, Wen-Kai Wan, Jye-Yen Cheng
  • Patent number: 7843000
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: November 30, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Publication number: 20100258870
    Abstract: A Fin field effect transistor includes a fin disposed over a substrate. A gate is disposed over a channel portion of the fin. A source region is disposed at a first end of the fin. A drain region is disposed at a second end of the fin. The source region and the drain region are spaced from the substrate by at least one air gap.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 14, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Rung HSU, Chen-Hua YU, Chen-Nan YEH
  • Publication number: 20100221878
    Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.
    Type: Application
    Filed: May 11, 2010
    Publication date: September 2, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
  • Publication number: 20100163971
    Abstract: A semiconductor structure includes a semiconductor substrate having a first portion and a second portion. A first Fin field-effect transistor (FinFET) is formed over the first portion of the semiconductor substrate, wherein the first FinFET includes a first fin having a first fin height. A second FinFET is formed over the second portion of the semiconductor substrate, wherein the second FinFET includes a second fin having a second fin height different from the first fin height. A top surface of the first fin is substantially level with a top surface of the second fin. A punch-through stopper is underlying and adjoining the first FinFET, wherein the punch-through stopper isolates the first fin from the first portion of the semiconductor substrate.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Shih-Ting Hung, Cheng-Hung Chang, Chen-Yi Lee, Chen-Nan Yeh, Chen-Hua Yu
  • Patent number: 7745890
    Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 29, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
  • Publication number: 20100144121
    Abstract: A method of forming a semiconductor structure includes providing a composite substrate, which includes a bulk silicon substrate and a silicon germanium (SiGe) layer over and adjoining the bulk silicon substrate. A first condensation is performed to the SiGe layer to form a condensed SiGe layer, so that the condensed SiGe layer has a substantially uniform germanium concentration. The condensed SiGe layer and a top portion of the bulk silicon substrate are etched to form a composite fin including a silicon fin and a condensed SiGe fin over the silicon fine. The method further includes oxidizing a portion of the silicon fin; and performing a second condensation to the condensed SiGe fin.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Yi Lee, Shih-Ting Hung, Chen-Nan Yeh, Chen-Hua Yu
  • Patent number: 7667271
    Abstract: A fin field-effect transistor (finFET) with improved source/drain regions is provided. In an embodiment, the source/drain regions of the fin are removed while spacers adjacent to the fin remain. An angled implant is used to implant the source/drain regions near a gate electrode, thereby allowing for a more uniform lightly doped drain. The fin may be re-formed by either epitaxial growth or a metallization process. In another embodiment, the spacers adjacent the fin in the source/drain regions are removed and the fin is silicided along the sides and the top of the fin. In yet another embodiment, the fin and the spacers are removed in the source/drain regions. The fins are then re-formed via an epitaxial growth process or a metallization process. Combinations of these embodiments may also be used.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: February 23, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yu-Rung Hsu, Chen-Nan Yeh
  • Patent number: 7629655
    Abstract: A system and method for forming a semiconductor device with a reduced source/drain extension parasitic resistance is provided. An embodiment comprises implanting two metals (such as ytterbium and nickel for an NMOS transistor or platinum and nickel for a PMOS transistor) into the source/drain extensions after silicide contacts have been formed. An anneal is then performed to create a second silicide region within the source/drain extension. Optionally, a second anneal could be performed on the second silicide region to force a further reaction. This process could be performed to multiple semiconductor devices on the same substrate.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: December 8, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Tung Lin, Chen-Nan Yeh
  • Publication number: 20090278196
    Abstract: A semiconductor structure includes a semiconductor substrate; a planar transistor on a first portion of the semiconductor substrate, wherein the first portion of the semiconductor substrate has a first top surface; and a multiple-gate transistor on a second portion of the semiconductor substrate. The second portion of the semiconductor substrate is recessed from the first top surface to form a fin of the multiple-gate transistor. The fin is electrically isolated from the semiconductor substrate by an insulator.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 12, 2009
    Inventors: Cheng-Hung Chang, Chen-Hua Yu, Chen-Nan Yeh
  • Patent number: 7612405
    Abstract: A semiconductor structure includes a first semiconductor strip extending from a top surface of the semiconductor substrate into the semiconductor substrate, wherein the first semiconductor strip has a first height. A first insulating region is formed in the semiconductor substrate and surrounding a bottom portion of the first semiconductor strip, wherein the first insulating region has a first top surface lower than a top surface of the first semiconductor strip. A second semiconductor strip extends from a top surface of the semiconductor substrate into the semiconductor substrate, wherein the second semiconductor strip has a second height greater than the first height. A second insulating region is formed in the semiconductor substrate and surrounding a bottom portion of the second semiconductor strip, wherein the second insulating region has a second top surface lower than the first top surface, and wherein the first and the second insulating regions have substantially same thicknesses.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: November 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Chu-Yun Fu, Yu-Rung Hsu