Patents by Inventor Chengrong Wang

Chengrong Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926793
    Abstract: Systems and methods are provided for improving product yields and/or product quality during co-processing of fast pyrolysis oil in a fluid catalytic cracking (FCC) reaction environment. The systems and methods can allow for co-processing of an increased amount of fast pyrolysis oil while reducing or minimizing coke production for a feedstock including fast pyrolysis oil and a conventional FCC feed. The reducing or minimizing of coke production can be achieved in part by adding a low molecular weight, non-ionic surfactant to the mixture of fast pyrolysis oil and conventional FCC feed.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: March 12, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Hyung Rae Kim, Chengrong Wang, Colin L. Beswick
  • Publication number: 20230416611
    Abstract: Systems and methods are provided for improving product yields and/or product quality during co-processing of fast pyrolysis oil in a fluid catalytic cracking (FCC) reaction environment. The systems and methods can allow for co-processing of an increased amount of fast pyrolysis oil while reducing or minimizing coke production for a feedstock including fast pyrolysis oil and a conventional FCC feed. The reducing or minimizing of coke production can be achieved in part by adding a low molecular weight, non-ionic surfactant to the mixture of fast pyrolysis oil and conventional FCC feed.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Xiaochun XU, Hyung Rae KIM, Chengrong WANG, Colin L. BESWICK
  • Patent number: 11674934
    Abstract: The present disclosure relates to methods for compositional analysis of algal biomass, specifically weight percent elemental composition. In at least one embodiment, a method for compositional analysis of an algae sample includes flash combusting a first portion of the algae sample to provide a carbon wt %, a hydrogen wt %, and a nitrogen weight %. The method includes pyrolysing a second portion of the algae sample to provide an oxygen wt %. The method includes scanning a third portion of the algae sample using x-ray fluorescence to provide an elemental intensity. The method includes normalizing the elemental intensity using the carbon wt %, the hydrogen wt %, the nitrogen wt %, and/or the oxygen wt %.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: June 13, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Anding Zhang, Kuangnan Qian, Chengrong Wang, Amy C. Clingenpeel
  • Publication number: 20230159852
    Abstract: In an embodiment is provided a process to re-refine used oil that includes introducing a used oil and a solvent to a separation unit under separation conditions selected to produce a purified oil product, the separation unit comprising a porous membrane, a semiporous membrane, or both; and separating the used oil to obtain an effluent comprising a purified oil product. In another embodiment is provided an apparatus for re-refining used oil that includes a separation unit comprising a porous or semiporous membrane; a used oil feed coupled to an inlet of the separation unit; and an inlet of a diffusate collection unit coupled to an outlet of the separation unit. In another embodiment is provided a composition generated from a membrane separation process that includes a base oil, the composition having a soot content of about 0.05% or less.
    Type: Application
    Filed: March 17, 2021
    Publication date: May 25, 2023
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Christine A. Zielinski, Paul C. Naegely, Meha H. Shah, Charles L. Baker, Jr., Chengrong Wang
  • Publication number: 20230131866
    Abstract: Systems and methods are provided for improving product yields and/or product quality during co-processing of fast pyrolysis oil in a fluid catalytic cracking (FCC) reaction environment. The systems and methods can allow for co-processing of an increased amount of fast pyrolysis oil while reducing or minimizing coke production for a feedstock including fast pyrolysis oil and a conventional FCC feed. The reducing or minimizing of coke production can be achieved in part by adding a low molecular weight, non-ionic surfactant to the mixture of fast pyrolysis oil and conventional FCC feed.
    Type: Application
    Filed: September 13, 2022
    Publication date: April 27, 2023
    Inventors: Xiaochun Xu, Hyung Rae Kim, Chengrong Wang, Colin L. Beswick
  • Patent number: 11225611
    Abstract: Disclose is an online analyzer to monitor conversion of a biofeedstock in a first hydrotreating stage to avoid catalyst poisoning in a subsequent stage. An example method of processing a biofeedstock may comprise hydrotreating the biofeedstock by reaction with hydrogen to form a hydrotreated biofeedstock. The method may further comprise monitoring conversion of the biofeedstock in the hydrotreating with an online analyzer.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: January 18, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chengrong Wang, Anding Zhang, Xiaochun Xu, Samuel J. Cady, Shifang Luo, Michael H. Ring, Maria Vanessa C. Aguinaldo, John Della Mora, Kegun L. Ream
  • Publication number: 20220010219
    Abstract: Disclose is an online analyzer to monitor conversion of a biofeedstock in a first hydrotreating stage to avoid catalyst poisoning in a subsequent stage. An example method of processing a biofeedstock may comprise hydrotreating the biofeedstock by reaction with hydrogen to form a hydrotreated biofeedstock. The method may further comprise monitoring conversion of the biofeedstock in the hydrotreating with an online analyzer.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Inventors: Chengrong Wang, Anding Zhang, Xiaochun Xu, Samuel J. Cady, Shifang Luo, Michael H. Ring, Maria Vanessa C. Aguinaldo, John Della Mora, Kegun L. Ream
  • Publication number: 20210262995
    Abstract: The present disclosure relates to methods for compositional analysis of algal biomass, specifically weight percent elemental composition. In at least one embodiment, a method for compositional analysis of an algae sample includes flash combusting a first portion of the algae sample to provide a carbon wt %, a hydrogen wt %, and a nitrogen weight %. The method includes pyrolysing a second portion of the algae sample to provide an oxygen wt %. The method includes scanning a third portion of the algae sample using x-ray fluorescence to provide an elemental intensity. The method includes normalizing the elemental intensity using the carbon wt %, the hydrogen wt %, the nitrogen wt %, and/or the oxygen wt %.
    Type: Application
    Filed: January 6, 2021
    Publication date: August 26, 2021
    Inventors: Anding Zhang, Kuangnan Qian, Chengrong Wang, Amy C. Clingenpeel
  • Publication number: 20210255125
    Abstract: A method and system for direct quantification of the concentration of biomolecules in algal biomass. The biomolecules include lipids, proteins, and carbohydrates. An algae slurry is cultivated within a cultivation vessel, and algal biomass is harvested therefrom. A portion of biomass is analyzed using solvent-lipid analysis to extract lipids and nuclear magnetic resonance spectroscopy is used to quantify the biomolecular concentration of the biomass.
    Type: Application
    Filed: January 6, 2021
    Publication date: August 19, 2021
    Inventors: Hao Wang, Chengrong Wang, Amy C. Clingenpeel, Kuangnan Qian
  • Patent number: 10774286
    Abstract: The present disclosure provides a grease composition with improved water resistance and mechanical stability at high-temperatures, including: at least one base oil; a water insoluble thickener; and a low molecular weight thixotropic polyamide composition having molecular weight distribution characteristics meeting the requirement described by the relationship: ( A + D ) ( B + C ) ? 0.05 where A=the % mass of the polyamide composition with a molecular weight greater than 1700 AMU; B=the % mass of the polyamide composition with a molecular weight between 1100 AMU and 1300 AMU; C=the % mass of the polyamide composition with a molecular weight between 700 AMU and 1000 AMU; and D=the % mass of the polyamide composition with a molecular weight of 600 AMU or lower (determined by GPC). The grease composition of the present disclosure provides a less than 50 penetration point change as determined by ASTM-D7342, a less than 10 mg weight loss as determined by ASTM-D4170, or both.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 15, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Sarvesh K. Agrawal, James E. Spagnoli, Chengrong Wang
  • Publication number: 20200199483
    Abstract: A method for improving viscosity control, while maintaining or improving deposit control and cleanliness, of a lubricating oil in an engine or other mechanical component lubricated with the lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and at least one oligomeric or polymeric aminic antioxidant, as a minor component. The at least one oligomeric or polymeric aminic antioxidant is formed in situ from at least one monomeric aminic antioxidant during operation of the engine or other mechanical component. The at least one monomeric aminic antioxidant is present in an amount sufficient to form in situ the at least one oligomeric or polymeric aminic antioxidant during operation of the engine or other mechanical component.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 25, 2020
    Inventors: Andrew E. Taggi, Chengrong Wang
  • Publication number: 20200199480
    Abstract: A method for controlling formation and dissipation of at least one oligomeric or polymeric aminic antioxidant in a lubricating oil, during operation of an engine or other mechanical component lubricated with the lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and at least one oligomeric or polymeric aminic antioxidant, as a minor component. The at least one oligomeric or polymeric aminic antioxidant is formed over time in situ from at least one monomeric aminic antioxidant during operation of the engine or other mechanical component. The at least one oligomeric or polymeric aminic antioxidant is dissipated over time in the lubricating oil during operation of the engine or other mechanical component. The at least one monomeric aminic antioxidant is present in an amount from greater than 2 to 10 wt. % of the lubricating oil.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 25, 2020
    Inventors: Andrew E. Taggi, Chengrong Wang
  • Publication number: 20190203149
    Abstract: The present disclosure provides a grease composition with improved water resistance and mechanical stability at high-temperatures, including: at least one base oil; a water insoluble thickener; and a low molecular weight thixotropic polyamide composition having molecular weight distribution characteristics meeting the requirement described by the relationship: ( A + D ) ( B + C ) ? 0.05 where A=the % mass of the polyamide composition with a molecular weight greater than 1700 AMU; B=the % mass of the polyamide composition with a molecular weight between 1100 AMU and 1300 AMU; C=the % mass of the polyamide composition with a molecular weight between 700 AMU and 1000 AMU; and D=the % mass of the polyamide composition with a molecular weight of 600 AMU or lower (determined by GPC). The grease composition of the present disclosure provides a less than 50 penetration point change as determined by ASTM-D7342, a less than 10 mg weight loss as determined by ASTM-D4170, or both.
    Type: Application
    Filed: December 12, 2018
    Publication date: July 4, 2019
    Inventors: Sarvesh K. AGRAWAL, James E. SPAGNOLI, Chengrong WANG
  • Patent number: 7691647
    Abstract: Compositions suitable for use as signal generation components of an immunoassay, and methods for their use. According to one aspect of the invention, the composition includes a carrier having a coating of an aminodextran and a metal chelate incorporated therein. The metal chelate is present in the amount of at least 0.065 ?Mole per gram of carrier, and the aminodextran coating density averaging at least about 45 ?g per milligram of carrier. In another aspect of the invention, carrier is dyed with a complex having the formula: M(L1)x(L2)y, wherein M is a metal selected from the group consisting of europium, terbium, dysprosium, samarium, osmium and ruthenium; L1 is a ligand selected from the group consisting of DPP, TOPO, TPPO; L2 comprises a ligand having the formula wherein R is one or more substituents, each substituent comprising an electron donating group; n=2-10; x=1-2; and y=2-4.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: April 6, 2010
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Alan R. Craig, Zhu Teng, Richard C. Wright, Chengrong Wang
  • Publication number: 20090325316
    Abstract: Compositions suitable for use as signal generation components of an immunoassay, and methods for their use. According to one aspect of the invention, the composition includes a carrier having a coating of an aminodextran and a metal chelate incorporated therein. The metal chelate is present in the amount of at least 0.065 ?M per milligram of carrier, and the aminodextran coating density averaging at least about 45 ?g per milligram of carrier. In another aspect of the invention, carrier is dyed with a complex having the formula: M(L1)x(L2)y, wherein M is a metal selected from the group consisting of europium, terbium, dysprosium, samarium, osmium and ruthenium; L1 is a ligand selected from the group consisting of DPP, TOPO, TPPO; L2 comprises a ligand having the formula wherein R is one or more substituents, each substituent comprising an electron donating group; n=2-10; x=1-2; and y=2-4.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 31, 2009
    Applicant: SIEMENS HEALTHCARE DIAGNOSTICS
    Inventors: Alan R. Craig, Zhu Teng, Richard C. Wright, Chengrong Wang
  • Patent number: 7186518
    Abstract: New derivatives of FK 506 are disclosed. These new derivatives and other derivatives that are useful for determining the levels of FK 506 in a sample are also provided as are assay procedures and kits for use in determining the levels of FK 506 or other macrophilin binding substances in blood, particularly un-extracted blood in the presence of specific binding proteins for FK 506.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: March 6, 2007
    Assignee: Dade Behring Inc.
    Inventors: Chengrong Wang, Tie Q. Wei, Zhu Teng
  • Publication number: 20060270063
    Abstract: Compositions suitable for use as signal generation components of an immunoassay, and methods for their use. According to one aspect of the invention, the composition includes a carrier having a coating of an aminodextran and a metal chelate incorporated therein. The metal chelate is present in the amount of at least 0.065 ?M per milligram of carrier, and the aminodextran coating density averaging at least about 45 ?g per milligram of carrier. In another aspect of the invention, carrier is dyed with a complex having the formula: M(L1)x(L2)y, wherein M is a metal selected from the group consisting of europium, terbium, dysprosium, samarium, osmium and ruthenium; L1 is a ligand selected from the group consisting of DPP, TOPO, TPPO; L2 comprises a ligand having the formula wherein R is one or more substituents, each substituent comprising an electron donating group; n=2-10; x=1-2; and y=2-4.
    Type: Application
    Filed: August 4, 2006
    Publication date: November 30, 2006
    Inventors: Alan Craig, Zhu Teng, Richard Wright, Chengrong Wang
  • Publication number: 20060166376
    Abstract: Compositions suitable for use as signal generation components of an immunoassay, and methods for their use. According to one aspect of the invention, the composition includes a carrier having a coating of an aminodextran and a metal chelate incorporated therein. The metal chelate is present in the amount of at least 0.065 ?M per milligram of carrier, and the aminodextran coating density averaging at least about 45 ?g per milligram of carrier. In another aspect of the invention, carrier is dyed with a complex having the formula: M (L1)x(L2)y, wherein M is a metal selected from the group consisting of europium, terbium, dysprosium, samarium, osmium and ruthenium; L1 is a ligand selected from the group consisting of DPP, TOPO, TPPO; L2 comprises a ligand having the formula wherein R is one or more substituents, each substituent comprising an electron donating group; n=2?10; x=1?2; and y=2?4.
    Type: Application
    Filed: January 21, 2005
    Publication date: July 27, 2006
    Inventors: Alan Craig, Zhu Teng, Richard Wright, Chengrong Wang
  • Publication number: 20050158877
    Abstract: Assay reagents include small metallic particles labeled with a Raman dye and antibody molecules capable of binding the analyte of interest. In the absence of the analyte, the size of the isolated metallic particles is so small that no significant SERS signal can be detected. An analyte molecule binds two metallic particles together through the formation of a sandwich complex, and then more metallic particles are clustered together by the analyte if each metallic particle contains more than two antibodies on the surface. The bonded metallic particles form a cluster structure, which significantly amplifies the SERS effect.
    Type: Application
    Filed: January 6, 2005
    Publication date: July 21, 2005
    Inventors: Chengrong Wang, Sean Wang, Qun Li
  • Publication number: 20050112778
    Abstract: New derivatives of FK 506 are disclosed. These new derivatives and other derivatives that are useful for determining the levels of FK 506 in a sample are also provided as are assay procedures and kits for use in determining the levels of FK 506 or other macrophilin binding substances in blood, particularly un-extracted blood in the presence of specific binding proteins for FK 506.
    Type: Application
    Filed: November 21, 2003
    Publication date: May 26, 2005
    Inventors: Chengrong Wang, Tie Wei, Zhu Teng