Patents by Inventor Chi-I Lang

Chi-I Lang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8906207
    Abstract: The present disclosure includes a method for control of a film composition with co-sputter physical vapor deposition. In one implementation, the method includes: positioning first and second PVD guns above a substrate, selecting first and second collimators having first and second sets of physical characteristics, positioning the first and second collimators between the first and second PVD guns and the substrate, sputtering at least one material from the first and second PVD guns through the first and second collimators upon application of a first power and second power, wherein the first PVD gun has a first deposition rate from the first collimator at the first power, and the second PVD gun has a second deposition rate from the second collimator at the second power.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: December 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Hong Sheng Yang, Chi-I Lang, Tony Chiang
  • Patent number: 8901677
    Abstract: A germanium-containing semiconductor surface is prepared for formation of a dielectric overlayer (e.g., a thin layer of high-k gate dielectric) by (1) removal of native oxide, for example by wet cleaning, (2) additional cleaning with hydrogen species, (3) in-situ formation of a controlled monolayer of GeO2, and (4) in-situ deposition of the dielectric overlayer to prevent uncontrolled regrowth of native oxide. The monolayer of GeO2 promotes uniform nucleation of the dielectric overlayer, but it too thin to appreciably impact the effective oxide thickness of the dielectric overlayer.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Frank Greer, Edwin Adhiprakasha, Chi-I Lang, Ratsamee Limdulpaiboon, Sandip Niyogi, Kurt Pang, J. Watanabe
  • Patent number: 8893923
    Abstract: Provided are methods and systems for dispensing different chemicals used for high productivity combinatorial processing. A dispense panel may include multiple inlet lines for supplying different chemicals. Each inlet line is connected to its own three-way valve that either allows the supplied chemical to flow from the inlet line towards a dispense valve connected to a dispense manifold (during dispensing of the supplied chemical) or allows another chemical to flow from the dispense valve to a waste manifold (during priming of the dispense manifold with this other chemical). Specifically, during priming a chemical supplied from its inlet line and is passed through a corresponding three-way valve and is directed to its dispense valve and then into the dispense manifold. Other dispense valves and three-way valves of the dispense panel allow this chemical to flow out of the dispense manifold, thereby priming remaining parts of the panel.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Satbir Kahlon, Aaron T. Francis, Chi-I Lang, Gregory P. Lim, Jeffrey Chih-Hou Lowe, Robert Anthony Sculac
  • Patent number: 8889479
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: November 18, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Tony P. Chiang, Chi-I Lang, Prashant B. Phatak, Jinhong Tong
  • Patent number: 8871860
    Abstract: Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, Tony Chiang, Zachary M. Fresco, Nitin Kumar, Chi-I Lang, Jinhong Tong, Anna Tsizelmon
  • Publication number: 20140315331
    Abstract: Candidate wet processes for native oxide removal from, and passivation of, germanium surfaces can be screened by high-productivity combinatorial variation of different process parameters on different site-isolated regions of a single substrate. Variable process parameters include the choice of hydrohalic acid used to remove the native oxide, the concentration of the acid in the solution, the exposure time, and the use of an optional sulfur passivation step. Measurements to compare the results of the process variations include attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray fluorescence (XRF). A sample screening experiment indicated somewhat less native oxide regrowth using HCl or HBr without sulfur passivation, compared to using HF with sulfur passivation.
    Type: Application
    Filed: March 11, 2014
    Publication date: October 23, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sandip Niyogi, Shuogang Huang, Chi-I Lang
  • Patent number: 8865518
    Abstract: Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: October 21, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Tony P. Chiang, Chi-I Lang, Zhi-Wen Wen Sun, Jihong Tong
  • Patent number: 8859427
    Abstract: Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Bob Kong, Tony Chiang, Chi-I Lang, Zhi-Wen Sun, Jinhong Tong
  • Publication number: 20140273309
    Abstract: Remote-plasma treatments of surfaces, for example in semiconductor manufacture, can be improved by preferentially exposing the surface to only a selected subset of the plasma species generated by the plasma source. The probability that a selected species reaches the surface, or that an unselected species is quenched or otherwise converted or diverted before reaching the surface, can be manipulated by introducing additional gases with selected properties either at the plasma source or in the process chamber, varying chamber pressure or flow rate to increase or decrease collisions, or changing the dimensions or geometry of the injection ports, conduits and other passages traversed by the species. Some example processes treat surfaces preferentially with relatively low-energy radicals, vary the concentration of radicals at the surface in real time, or clean and passivate in the same unit process.
    Type: Application
    Filed: October 10, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sandip Niyogi, Sean Barstow, Jay Dedontney, Chi-I Lang, Ratsamee Limdulpaiboon, Martin Romero, Sunil Shanker, James Tsung, J. Watanabe
  • Publication number: 20140264281
    Abstract: Semiconductor devices and methods of making thereof are disclosed. A field effect transistor (FET) is provided comprising a substrate, a first layer disposed above the substrate, the first layer being operable as a gate electrode, a second layer disposed above the first layer, the second layer comprising a dielectric material, a third layer disposed above the second layer, the third layer comprising a semiconductor, and a fourth layer comprising one or more conductive materials and operable as source and drain electrodes disposed above the third layer. In some embodiments, the dielectric material comprises a high-? dielectric. In some embodiments, the source and drain electrodes comprise one or more metals. The source and drain electrodes are each in ohmic contact with an area of the top surface of the third layer, and substantially all of the current through the transistor flows through the ohmic contacts.
    Type: Application
    Filed: December 20, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sandip Niyogi, Sean Barstow, Chi-I Lang, Ratsamee Limdulpaiboon, Dipankar Pramanik, J. Watanabe
  • Publication number: 20140262749
    Abstract: Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma processing can be performed in a same process chamber. The process chamber, configured to perform sputter deposition and plasma processing, comprises a grounded shield having at least an aperture disposed above the substrate to form a small, dark space gap to reduce or eliminate any plasma formation within the gap. The plasma processing may include plasma etching or plasma surface treatment.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Ashish Bodke, Olov Karlsson, Kevin Kashefi, Chi-I Lang, Dipankar Pramanik, Hong Sheng Yang, Xuena Zhang
  • Publication number: 20140273525
    Abstract: Metal-oxide films (e.g., aluminum oxide) with low leakage current suitable for high-k gate dielectrics are deposited by atomic layer deposition (ALD). The purge time after the metal-deposition phase is 5-15 seconds, and the purge time after the oxidation phase is prolonged beyond 60 seconds. Prolonging the post-oxidation purge produced an order-of-magnitude reduction of leakage current in 30 ?-thick Al2O3 films.
    Type: Application
    Filed: September 6, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Kurt Pang, Sean Barstow, Chi-I Lang, Michael Miller, Sandip Niyogi, Prashant B. Phatak
  • Publication number: 20140273493
    Abstract: Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber enclosing a substrate support, a remote plasma source, and a showerhead. A substrate heater can be mounted in the substrate support. A transport system moves the substrate support and is capable of positioning the substrate. The plasma system may be used to generate activated hydrogen species. The activated hydrogen species can be used to etch/clean semiconductor oxide surfaces such as silicon oxide or germanium oxide.
    Type: Application
    Filed: September 19, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Ratsamee Limdulpaiboon, Chi-I Lang, Sandip Niyogi, J. Watanabe
  • Patent number: 8836365
    Abstract: An apparatus and method for testing electromigration in semiconductor devices includes providing an electromigration test structure, where the electromigration test structure includes a first metal line; a metal bridge operatively coupled to the first metal line; a second metal line operatively coupled to the metal bridge; a barrier layer surrounding the electromigration test structure; current contact pads; and voltage contact pads. The current contact pads are connected to a current source and the voltage contact pads are connected to a voltage source. The barrier layer is exposed to the elevated current density as current travels from the first metal line across the barrier layer through the metal bridge to the second metal line.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 16, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Publication number: 20140252565
    Abstract: A germanium-containing semiconductor surface is prepared for formation of a dielectric overlayer (e.g., a thin layer of high-k gate dielectric) by (1) removal of native oxide, for example by wet cleaning, (2) additional cleaning with hydrogen species, (3) in-situ formation of a controlled monolayer of GeO2, and (4) in-situ deposition of the dielectric overlayer to prevent uncontrolled regrowth of native oxide. The monolayer of GeO2 promotes uniform nucleation of the dielectric overlayer, but it too thin to appreciably impact the effective oxide thickness of the dielectric overlayer.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Frank Greer, Edwin Adhiprakasha, Chi-I Lang, Ratsamee Limdulpaiboon, Sandip Niyogi, Kurt Pang, J. Watanabe
  • Patent number: 8822313
    Abstract: Embodiments provided herein describe methods and systems for processing substrates. A plasma including radical species and charged species is generated. The charged species of the plasma are collected. A substrate is exposed to the radical species of the plasma. A layer is formed on the substrate after exposing the substrate to the radical species.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Chi-I Lang, Sandip Niyogi
  • Patent number: 8821985
    Abstract: Methods and apparatuses for combinatorial processing are disclosed. Methods include introducing a substrate into a processing chamber. Methods further include forming a first film on a surface of a first site-isolated region on the substrate and forming a second film on a surface of a second site-isolated region on the substrate. The methods further include exposing the first film to a plasma having a first source gas to form a first treated film on the substrate and exposing the second film to a plasma having a second source gas to form a second treated film on the substrate without etching the first treated film in the processing chamber. In addition, methods include evaluating results of the treated films post processing.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: ShouQian Shao, Chi-I Lang, Sandip Niyogi, Jinhong Tong
  • Patent number: 8821987
    Abstract: Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber, a remote plasma source, and a showerhead. Inert gas ports within the showerhead assembly can be used to alter the concentration and energy of reactive radical or reactive neutral species generated by the remote plasma source in different regions of the showerhead. This allows the showerhead to be used to apply a surface treatment to different regions of the surface of a substrate. Varying parameters such as the remote plasma parameters, the inert gas flows, pressure, and the like allow different regions of the substrate to be treated in a combinatorial manner.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony P. Chiang, Chi-I Lang, Sandip Niyogi
  • Publication number: 20140231744
    Abstract: Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Intermolecular Inc.
    Inventors: Nitin Kumar, Tony P. Chiang, Chi-I Lang, Zhi-Wen Wen Sun, Jinhong Tong
  • Patent number: 8809161
    Abstract: Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 19, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Vishal Gauri, Raashina Humayun, Chi-I Lang, Judy H. Huang, Michael Barnes, Sunil Shanker