Patents by Inventor Chia-Hua Chu

Chia-Hua Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145132
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, and a conductive filler. The polymer matrix has a fluoropolymer. The total volume of the PTC material layer is calculated as 100%, and the fluoropolymer accounts for 47-62% by volume of the PTC material layer. The fluoropolymer has a melt viscosity higher than 3000 Pa·s.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 2, 2024
    Inventors: CHENG-YU TUNG, CHEN-NAN LIU, Chia-Yuan Lee, HSIU-CHE YEN, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240145133
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a first conductive filler. The polymer matrix includes a polyolefin-based polymer and a fluoropolymer. The fluoropolymer has a melt flow index higher than 1.9 g/10 min, and the polyolefin-based polymer and the fluoropolymer together form an interpenetrating polymer network (IPN). The first conductive filler has a metal-ceramic compound dispersed in the polymer matrix.
    Type: Application
    Filed: April 5, 2023
    Publication date: May 2, 2024
    Inventors: CHEN-NAN LIU, YUNG-HSIEN CHANG, CHENG-YU TUNG, HSIU-CHE YEN, Chia-Yuan LEE, Yao-Te CHANG, FU-HUA CHU
  • Publication number: 20240127988
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 48% to 55%. The conductive filler has a metal-ceramic compound.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Inventors: HSIU-CHE YEN, YUNG-HSIEN CHANG, CHENG-YU TUNG, Chia-Yuan Lee, CHEN-NAN LIU, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240127989
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 33% to 42%.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-YUAN LEE, CHENG-YU TUNG, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, YAO-TE CHANG, FU-HUA CHU
  • Patent number: 11956888
    Abstract: An electronic device includes a casing, a circuit board and a grounding assembly. The circuit board has a first surface and a second surface, wherein an input terminal and an output terminal are disposed on the second surface. The grounding assembly comprises a conducting terminal, a first grounding element and a second grounding element. The conducting terminal is disposed on the first surface of the circuit board, and the first grounding element is disposed adjacent to the conducting terminal. The first grounding element penetrates the circuit board and electrically couples with the conducting terminal and the casing, and the second grounding element correspondingly penetrates the circuit board and the conducting element, so that a first portion of the second grounding element electrically couples with the input terminal and the output terminal of the circuit board, and a second portion of the second grounding element electrically couples with the conducting terminal.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 9, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chia-Hsien Chu, Yi-Hua Chang
  • Publication number: 20230382716
    Abstract: Various embodiments of the present disclosure are directed towards an electronic device that comprises a semiconductor substrate having a first surface opposite a second surface. The semiconductor substrate at least partially defines a cavity. A first microelectromechanical systems (MEMS) device is disposed along the first surface of the semiconductor substrate. The first MEMS device comprises a first backplate and a diaphragm vertically separated from the first backplate. A second MEMS device is disposed along the first surface of the semiconductor substrate. The second MEMS device comprises spring structures and a moveable element. The spring structures are configured to suspend the moveable element in the cavity. A segment of the semiconductor substrate continuously laterally extends from under a sidewall of the first MEMS device to under a sidewall of the second MEMS device.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Chun Yin Tsai, Wen Cheng Kuo
  • Publication number: 20230370783
    Abstract: A MEMS device and a method of manufacturing the same are provided. A semiconductor device includes a substrate; and a membrane over the substrate and configured to generate charges in response to an acoustic wave, the membrane being in a polygonal shape including vertices. The membrane includes a via pattern includes: first lines that partition the membrane into slices and extend to the vertices of the membrane such that the slices are separated from each other near an anchored region of the membrane and connected to each other around a central region; and second lines extending from the anchored region of the membrane toward the central region of the membrane, each of the first lines or each of the second lines including non-straight lines.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Inventors: CHUN-WEN CHENG, CHUN YIN TSAI, CHIA-HUA CHU
  • Patent number: 11807521
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a microelectromechanical systems (MEMS) device. The method includes forming a filter stack over a carrier substrate. The filter stack comprises a particle filter layer having a particle filter. A support structure layer is formed over the filter stack. The support structure layer is patterned to define a support structure in the support structure layer such that the support structure has one or more segments. The support structure is bonded to a MEMS structure.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Wen Cheng Kuo
  • Publication number: 20230353066
    Abstract: A microelectromechanical system (MEMS) device includes a substrate and a movable element at least partially suspended above the substrate and having at least one degree of freedom. The MEMS device further includes a protrusion extending from the substrate and configured to contact the movable element when the movable element moves in the at least one degree of freedom, wherein the protrusion comprises a surface having a water contact angle of higher than about 15° measured in air.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Inventors: Yi Heng Tsai, Chia-Hua Chu, Kuei-Sung Chang
  • Publication number: 20230278856
    Abstract: Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 11750980
    Abstract: A MEMS device and a method of manufacturing the same are provided. A semiconductor device includes a substrate; and a membrane over the substrate and configured to generate charges in response to an acoustic wave, the membrane being in a polygonal shape including vertices. The membrane includes a via pattern having first lines that partition the membrane into slices and extend to the vertices of the membrane such that the slices are separated from each other near an anchored region of the membrane and connected to each other around a central region. The via pattern further includes second lines extending from the anchored region of the membrane toward the central region of the membrane. Each of the second lines includes a length less than a length of each of the first lines.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Chun Yin Tsai, Chia-Hua Chu
  • Patent number: 11736037
    Abstract: A microelectromechanical system (MEMS) device includes a substrate and a movable element at least partially suspended above the substrate and having at least one degree of freedom. The MEMS device further includes a protrusion extending from the substrate and configured to contact the movable element when the movable element moves in the at least one degree of freedom, wherein the protrusion comprises a surface having a water contact angle of higher than about 15° measured in air.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Heng Tsai, Chia-Hua Chu, Kuei-Sung Chang
  • Publication number: 20230243461
    Abstract: Examples of stands and display devices are described. In an example, a stand may be coupled to a pair of racks, a driving gear, and a pair of pinion gears. The pair of pinion gears may be operably coupled to the driving gear. Further, the pair of pinion gears may be meshed with the pair of racks. Upon actuation of the driving gear, the pair of pinion gears may be rotated relative to the pair of racks to cause movement of the gears along the pair of racks.
    Type: Application
    Filed: July 8, 2020
    Publication date: August 3, 2023
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventor: Chia-Hua CHU
  • Publication number: 20230192476
    Abstract: A MEMS device includes a first multi-layer structure, a second multi-layer structure over the first multi-layer structure, a first semiconductor layer between the first and second multilayer structures, a first air gap separating the first multi-layer structure and the first semiconductor layer, a second air gap separating the first semiconductor layer and the second multi-layer structure, a plurality of semiconductor pillars, and a plurality of second semiconductor pillars. The first semiconductor pillars are exposed to the first air gap, and coupled to the first semiconductor layer and the first multi-layer structure. The second semiconductor pillars are exposed to the second air gap, and coupled to the first semiconductor layer and the second multi-layer structure.
    Type: Application
    Filed: February 12, 2023
    Publication date: June 22, 2023
    Inventors: CHEN HSIUNG YANG, CHUN-WEN CHENG, CHIA-HUA CHU, EN-CHAN CHEN
  • Patent number: 11678133
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-Wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 11667517
    Abstract: Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 11649162
    Abstract: Various embodiments of the present disclosure are directed towards a method for manufacturing a microelectromechanical systems (MEMS) device. The method includes forming a particle filter layer over a carrier substrate. The particle filter layer is patterned while the particle filter layer is disposed on the carrier substrate to define a particle filter in the particle filter layer. A MEMS substrate is bonded to the carrier substrate. A MEMS structure is formed over the MEMS substrate.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Wen Cheng Kuo
  • Publication number: 20230081170
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander KALNITSKY, Yi-Shao LIU, Kai-Chih LIANG, Chia-Hua CHU, Chun-Ren CHENG, Chun-Wen CHENG
  • Patent number: 11581476
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a first piezoelectric layer, and a first dummy layer. The first piezoelectric layer is over the substrate, and the first piezoelectric layer has a first top surface. The first dummy layer is over the first piezoelectric layer, and the first dummy layer has a second top surface. And an average roughness of the first top surface is greater than an average roughness of the second top surface. A method for manufacturing the semiconductor structure is also provided.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Chun Yin Tsai, Chia-Hua Chu
  • Patent number: 11577954
    Abstract: A method for forming a MEMS device includes following operations. A first semiconductor layer is formed over a substrate. A plurality of first pillars are formed over the first layer. A second layer is formed over the first pillars and the first layer. A plurality of second pillars are formed over the second layer. A third layer is formed over the second pillars and the second layer.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen Hsiung Yang, Chun-Wen Cheng, Chia-Hua Chu, En-Chan Chen