Patents by Inventor Chien-Tai Chan

Chien-Tai Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160225906
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a doped region in an upper portion of the substrate. The doped region is doped with first dopants of a first conduction type. The semiconductor device structure includes one fin structure over the substrate. A first dopant concentration of the doped region exposed by the fin structure is greater than a second dopant concentration of the doped region covered by the fin structure. The semiconductor device structure includes an isolation layer over the substrate and at two opposite sides of the fin structure. The semiconductor device structure includes a gate over the isolation layer and the fin structure.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 4, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Tsan-Chun WANG, Ziwei FANG, Chien-Tai CHAN, Da-Wen LIN, Huicheng CHANG
  • Publication number: 20160204255
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Pin LIN, Chien-Tai CHAN, Hsien-Chin LIN, Shyue-Shyh LIN
  • Publication number: 20160204229
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 9379208
    Abstract: A method of forming an integrated circuit includes forming a gate electrode over a substrate, forming a recess in the substrate and adjacent to the gate electrode, forming a diffusion barrier structure in the recess, forming an N-type doped silicon-containing structure over the diffusion barrier structure and thermally annealing the N-type doped silicon-containing structure. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode and the second portion is distant from the gate electrode. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate and the second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: June 28, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Su-Hao Liu, Chien-Tai Chan, King-Yuen Wong, Chien-Chang Su
  • Patent number: 9373704
    Abstract: A system and method for manufacturing multiple-gate semiconductor devices is disclosed. An embodiment comprises multiple fins, wherein intra-fin isolation regions extend into the substrate less than inter-fin isolation regions. Regions of the multiple fins not covered by the gate stack are removed and source/drain regions are formed from the substrate so as to avoid the formation of voids between the fins in the source/drain region.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung Ying Lee, Li-Wen Weng, Chien-Tai Chan, Da-Wen Lin, Hsien-Chin Lin
  • Patent number: 9362404
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20160149040
    Abstract: A FinFET includes a fin structure, a gate and a source-drain region. The fin structure is over a substrate and has a recess of an upper surface of the fin structure and a doped region in the fin structure and adjacent to the recess. The gate protrudes from the recess and across over the fin structure. The source-drain region is in the fin structure and adjacent to the doped region. Methods for forming the FinFET are also provided.
    Type: Application
    Filed: August 6, 2015
    Publication date: May 26, 2016
    Inventors: Wei-Yang LEE, Ting-Yeh CHEN, Chia-Ling CHAN, Chien-Tai CHAN
  • Patent number: 9343575
    Abstract: A FinFET includes a fin structure, a gate and a source-drain region. The fin structure is over a substrate and has a recess of an upper surface of the fin structure and a doped region in the fin structure and adjacent to the recess. The gate protrudes from the recess and across over the fin structure. The source-drain region is in the fin structure and adjacent to the doped region. Methods for forming the FinFET are also provided.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 17, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yang Lee, Ting-Yeh Chen, Chia-Ling Chan, Chien-Tai Chan
  • Patent number: 9312179
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 12, 2016
    Assignee: Taiwan-Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Pin Lin, Chien-Tai Chan, Hsien-Chin Lin, Shyue-Shyh Lin
  • Patent number: 9293534
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 9224737
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Kai Chen, Hsien-Hsin Lin, Chia-Pin Lin, Chien-Tai Chan, Yuan-Ching Peng
  • Publication number: 20150270342
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 9129988
    Abstract: A FinFET includes a fin structure, a gate and a source-drain region. The fin structure is over a substrate and has a recess of an upper surface of the fin structure and a doped region in the fin structure and adjacent to the recess. The gate protrudes from the recess and across over the fin structure. The source-drain region is in the fin structure and adjacent to the doped region. Methods for forming the FinFET are also provided.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: September 8, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yang Lee, Ting-Yeh Chen, Chia-Ling Chan, Chien-Tai Chan
  • Publication number: 20150243739
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20150115322
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Application
    Filed: November 26, 2014
    Publication date: April 30, 2015
    Inventors: Hung-Kai CHEN, Hsien-Hsin LIN, Chia-Pin LIN, Chien-Tai CHAN, Yuan-Ching PENG
  • Publication number: 20150079753
    Abstract: A system and method for manufacturing multiple-gate semiconductor devices is disclosed. An embodiment comprises multiple fins, wherein intra-fin isolation regions extend into the substrate less than inter-fin isolation regions. Regions of the multiple fins not covered by the gate stack are removed and source/drain regions are formed from the substrate so as to avoid the formation of voids between the fins in the source/drain region.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Tung Ying Lee, Li-Wen Weng, Chien-Tai Chan, Da-Wen Lin, Hsien-Chin Lin
  • Publication number: 20150069046
    Abstract: A thermal processing apparatus is provided in accordance with some embodiments. The thermal processing apparatus includes a heating source for transmitting incident radiation to a work piece having a circuit pattern formed on a front surface; a radiation sensor configured to receive light radiated from the front surface of the work piece; and a controller coupled to the radiation sensor, the controller being designed to control the heating source to reduce temperature variation of the work piece.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: CHUN HSIUNG TSAI, CHII-MING WU, DE-WEI YU, CHIEN-TAI CHAN
  • Patent number: 8951875
    Abstract: A semiconductor structure includes a substrate, a gate structure, and two silicon-containing structures. The substrate includes two recesses defined therein and two doping regions of a first dopant type. Each of the two doping regions extends along a bottom surface and at least portion of a sidewall of a corresponding one of the two recesses. The gate structure is over the substrate and between the two recesses. The two silicon-containing structures are of a second dopant type different from the first dopant type. Each of the two silicon-containing structures fills a corresponding one of the two recesses, and an upper portion of each of the two silicon-containing structures has a dopant concentration higher than that of a lower portion of each of the two silicon-containing structures.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: King-Yuen Wong, Ming-Lung Cheng, Chien-Tai Chan, Da-Wen Lin, Chung-Cheng Wu
  • Publication number: 20150024569
    Abstract: A method of forming an integrated circuit includes forming a gate electrode over a substrate, forming a recess in the substrate and adjacent to the gate electrode, forming a diffusion barrier structure in the recess, forming an N-type doped silicon-containing structure over the diffusion barrier structure and thermally annealing the N-type doped silicon-containing structure. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode and the second portion is distant from the gate electrode. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate and the second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Inventors: Chun Hsiung TSAI, Su-Hao LIU, Chien-Tai CHAN, King-Yuen WONG, Chien-Chang SU
  • Patent number: 8937353
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Kai Chen, Hsien-Hsin Lin, Chia-Pin Lin, Chien-Tai Chan, Yuan-Ching Peng