Patents by Inventor Chih-Chang Lin

Chih-Chang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140270031
    Abstract: Some embodiments relate to a phase interpolator. The phase interpolator includes a control block to provide a plurality of phase interpolation control signals which are collectively indicative of a phase difference between a first clock and a second clock. The phase interpolation control signals define different phase step sizes by which the first clock is to be phase shifted to limit the phase difference. A plurality of Gilbert cells provide a plurality of current levels, respectively, based on the plurality of phase interpolation control signals. A plurality of current control elements adjust the plurality of current levels from the plurality of Gilbert cells. The plurality of current levels are adjusted by different amounts for the different phase step sizes.
    Type: Application
    Filed: January 27, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen (David) Chung, Tsung-Ching (Jim) Huang, Chih-Chang Lin
  • Publication number: 20140266114
    Abstract: A voltage regulator circuit comprises an amplifier having an inverting input and a non-inverting input. The amplifier is configured to generate a control signal based on a reference signal at the inverting input of the amplifier and a feedback signal at the non-inverting input of the amplifier. The voltage regulator circuit also comprises an output node, a first power node, a second power node, and a driver that generates a driving current flowing toward the output node in response to the control signal. The driver is coupled between the first power node and the output node. A first transistor having a gate is coupled between the output node and the second power node. A bias circuit outside the amplifier supplies a bias signal to the gate of the first transistor, which is configured to operate in a saturation mode based on the bias signal supplied by the bias circuit.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Tzu Ching CHANG, Min-Shueh YUAN, Yuwen SWEI, Chih-Chang LIN, Chiang PU, Ming-Chieh HUANG, Kuoyuan HSU
  • Publication number: 20140266118
    Abstract: A voltage regulator includes a driving circuit, a feedback circuit, first and second control circuits and a resistor. The driving circuit is coupled to an input node and an output node and generates an output voltage at the output node from an input voltage at the input node. The feedback circuit is coupled to the output node and generates a feedback voltage based on the output voltage. The first control circuit is coupled to the feedback circuit and the driving circuit to control the output voltage based on the feedback voltage. The resistor has opposite first and second terminals. The first terminal of the resistor is coupled to the output node. The second control circuit is coupled to the second terminal of the output stage resistor and the feedback circuit to control the feedback voltage based on a regulated voltage at the second terminal of the resistor.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY , LTD.
    Inventors: Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN, Tsung-Ching (Jim) HUANG
  • Patent number: 8816732
    Abstract: A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin, Tsung-Ching Huang, Fu-Lung Hsueh
  • Patent number: 8791720
    Abstract: A control circuit comprises a first NOR gate, a first NMOS transistor, and a first PMOS transistor. The control circuit also comprises an output node. The control circuit further comprises a half latch keeper circuit coupled to a gate of the first NMOS transistor and to a gate of the first PMOS transistor. The half latch keeper circuit is configured to keep the output node at a logical 1 during a standby mode. The control circuit additionally comprises an operational PMOS transistor coupled to the output node. An output of the first NOR gate is coupled to a gate of the operational PMOS transistor. The control circuit is configured to turn off the operational PMOS transistor during the standby mode.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: July 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Fu-Lung Hsueh, Ming-Chieh Huang, Bryan Sheffield, Chih-Chang Lin
  • Publication number: 20140184299
    Abstract: A circuit includes a first capacitive device and a first latch. The first capacitive device includes a first end configured to receive a first input signal and a second end coupled with the first latch. The first latch includes a first transistor and a second transistor that are of a first type. A first terminal of the first transistor and a first terminal of the second transistor are each configured to receive a first voltage value. A second terminal of the first transistor is coupled with a third terminal of the second transistor. A third terminal of the first transistor is coupled with a second terminal of the second transistor and with the second end of the capacitive device, and is configured to provide an output voltage for the first latch.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Tsung-Ching (Jim) HUANG, Chih-Chang LIN, Ming-Chieh HUANG
  • Publication number: 20140183652
    Abstract: The described embodiments of mechanisms for placing dummy gate structures next to and/or near a number of wide gate structures reduce dishing effect for gate structures during chemical-mechanical polishing of gate layers. The arrangements of dummy gate structures and the ranges of metal pattern density have been described. Wide gate structures, such as analog devices, can greatly benefit from the reduction of dishing effect.
    Type: Application
    Filed: July 8, 2013
    Publication date: July 3, 2014
    Inventors: Chan-Hong Chern, Chih-Chang Lin, Jacklyn Chang, Julie Tran
  • Patent number: 8766613
    Abstract: A method of operating a voltage regulator circuit includes generating a control signal by an amplifier of the voltage regulator circuit. The control signal is generated based on a reference signal at an inverting input of the amplifier and a feedback signal at a non-inverting input of the amplifier. A driving current flowing toward an output node of the voltage regulator circuit is generated by a driver responsive to the control signal, and the driver is coupled between a first power node and the output node. The feedback signal is generated responsive to a voltage level at the output node. A transistor, coupled between the output node and a second power node, is caused to operate in saturation mode during a period while the voltage regulator circuit is operating.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Tzu-Ching Chang, Min-Shueh Yuan, Yuwen Swei, Chih-Chang Lin, Chiang Pu, Ming-Chieh Huang, Kuoyuan Hsu
  • Publication number: 20140126656
    Abstract: A clock data recovery circuit (CDR) extracts bit data values from a serial bit stream without reference to a transmitter clock. A controllable oscillator produces a regenerated clock signal controlled to match the frequency and phase of transitions between bits and the serial data is sampled at an optimal phase. A phase detector generates early-or-late indication bits for clock versus data transition times, which are accumulated and applied to a second order feedback control with two distinct feedback paths for frequency and phase, combined for correcting the controllable oscillator, selecting a sub-phase and/or determining an optimal phase at which the bit stream data values are sampled. The second order filter is operated at distinct rates such that the phase correction has a latency as short as one clock cycle and the frequency correction latency occurs over plural cycles.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN, Yuwen SWEI, Tsung-Ching HUANG
  • Publication number: 20140119426
    Abstract: A slicer includes a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal. The first latch further includes a developing transistor configured to receive a second clock signal, wherein the first clock signal is different from the second clock signal. The first latch further includes a first input transistor configured to receive a first input. The first latch further includes a second input transistor configured to receive a second input, wherein the first and second input transistors are connected with the developing transistor. The first latch further includes at least one pre-charging transistor configured to receive a third clock signal, wherein the at least one pre-charging transistor is connected to a first output node and a second output node. The slicer further includes a second latch connected to the first and second output nodes and to a third output node.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Chih-Chang LIN, Tsung-Ching HUANG, Derek C. TAO
  • Patent number: 8709684
    Abstract: Some aspects of the present disclosure provide for a method of automatically balancing mask misalignment for multiple patterning layers to minimize the consequences of mask misalignment. In some embodiments, the method defines a routing grid for one or more double patterning layers within an IC layout. The routing grid has a plurality of vertical grid lines extending along a first direction and a plurality of horizontal grid lines extending along a second, orthogonal direction. Alternating lines of the routing grid in a given direction (e.g., the horizontal and vertical direction) are assigned different colors. Shapes on the double patterning layers are then routed along the routing grid in a manner that alternates between different colored grid lines. By routing in such a manner, variations in capacitive coupling caused by mask misalignment are reduced.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin, Tsung-Ching (Jim) Huang, Fu-Lung Hsueh
  • Publication number: 20140103967
    Abstract: A method of making a level shifter includes coupling a driver stage between an input end and an output end, the driver stage comprising a first transistor and a second transistor. An inverter having an input is coupled with the input end. A third transistor having a gate end is coupled with an output of the inverter, the third transistor having a terminal coupled to a pumped voltage (VPP). Additionally, the method includes coupling a fourth transistor with the output end, the fourth transistor having a terminal coupled to the pumped voltage. A fifth transistor is coupled with the input end, the fifth transistor having a terminal coupled to the third and fourth transistors. A sixth transistor is coupled with the input end, the sixth transistor having a terminal.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tien Chun YANG, Yuwen SWEI, Chih-Chang LIN, Chiang PU
  • Patent number: 8698566
    Abstract: An inductor-capacitor phase locked loop (LCPLL) includes an inductor-capacitor voltage controlled oscillator (LCVCO) that provides an output frequency. A calibration circuit includes two comparators and provides a coarse tune signal to the LCVCO. The two comparators respectively compare the loop filter signal with a first reference voltage and a second reference voltage that is higher than the first reference voltage to supply a first and second comparator output, respectively. The calibration circuit is capable of adjusting the coarse tune signal continuously in voltage values and adjusts the coarse tune signal based on the two comparator outputs. A loop filter provides a loop filter signal to the calibration circuit and a fine tune signal to the LCVCO. A coarse tune frequency range is greater than a fine tune frequency range.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Ming-Chieh Huang, Tao Wen Chung, Chih-Chang Lin, Fu-Lung Hsueh, Yuwen Swei
  • Publication number: 20140092511
    Abstract: An input/output (I/O) circuit includes an electrostatic discharge (ESD) protection circuit electrically coupled with an output node of the I/O circuit. At least one inductor and at least one loading are electrically coupled in a series fashion and between the output node of the I/O circuit and a power line. A circuitry is electrically coupled with a node between the at least one inductor and the at least one loading. The circuitry is operable to increase a current flowing through the at least one inductor during a signal transition. The circuitry comprises at least one pre-driver stage having at least one output node, and the at least one output node of the at least one pre-driver stage is electrically coupled with at least one input node of a driver stage.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN, Yuwen SWEI
  • Publication number: 20140085009
    Abstract: A method of sharing inductors for inductive peaking of an amplifier includes calculating a single stage inductance of a single stage for inductive peaking in order to have a stable impulse response. The method further includes determining a number of stages for shared inductance for inductive peaking. The method further includes sharing at least two inductors having the shared inductance among the determined number of stages for inductive peaking.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN, Yuwen SWEI
  • Patent number: 8673312
    Abstract: Helicobacter pylori is closely associated with chronic gastritis, peptic ulcer disease, and gastric adenocarcinoma. Helicobacter pylori neutrophil-activating protein (HP-NAP), a virulence factor of Helicobacter pylori, plays an important role in pathogenesis of Helicobacter pylori infection. Since HP-NAP has been proposed as a candidate vaccine against Helicobacter pylori infection, an efficient way to obtain pure HP-NAP needs to be developed. In the present invention, recombinant HP-NAP expressed in Bacillus subtilis and Escherichia coli was purified through a single step of DEAE SEPHADEX ion-exchange chromatography with high purity. Also, purified recombinant HP-NAP was able to stimulate neutrophils to produce reactive oxygen species. Thus, recombinant HP-NAP obtained from our Bacillus subtilis expression system and Escherichia coli expression system is functionally active.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 18, 2014
    Assignee: National Tsing Hua University
    Inventors: Hua-Wen Fu, Kuo-Shun Shih, Chih-Chang Lin, Yu-Chi Yang
  • Publication number: 20140049243
    Abstract: A current generator includes an amplifier having a first terminal configured to receive an input voltage, at least one tunable resistor coupled to a second terminal of the amplifier, a resistor calibration circuit coupled to the at least one tunable resistor, and at least one transistor. A gate of the at least one transistor is coupled to an output of the amplifier, and a terminal of the at least one transistor is coupled to the at least one tunable resistor or a load. The resistor calibration circuit is configured to adjust a resistance setting of the at least one tunable resistor to control a current level of the current generator based on a power supply voltage or a current of a reference resistor.
    Type: Application
    Filed: October 29, 2013
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Chih-Chang LIN
  • Publication number: 20140044225
    Abstract: A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. The CDR circuit further includes a delay locked loop (DLL) configured to receive the clock signal from the LCVCO and generate multiple clock phases and a first charge pump configured to control the LCVCO. The CDR circuit further includes a phase detector configured to receive a data input and the multiple clock phases from the DLL, and to align a data edge of the data input and the multiple clock phases.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Chih-Chang LIN, Ming-Chieh HUANG, Fu-Lung HSUEH
  • Publication number: 20140037035
    Abstract: A phase interpolator for a CDR circuit produces an output clock having level transitions between the level transitions on two input clocks. The input clocks drive cross-coupled differential amplifiers with an output that can be varied in phase by variable current throttling or steering, according to an input control value. The differential amplifiers produce an output signal with a transition spanning a time between the start of a transition on the leading input clock up to the end of the transition on the lagging input clock. The output clock is linear so long as the transitions on the two input clocks overlap. Active integrators each having an amplifier with a series resistance and capacitive feedback path are coupled to each input to the cross-coupled differential amplifiers, which enhances overlap of the input clock rise times and improves the linearity of the interpolated output signal.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN, Yuwen SWEI
  • Publication number: 20140038085
    Abstract: Some aspects of the present disclosure provide for a method of automatically balancing mask misalignment for multiple patterning layers to minimize the consequences of mask misalignment. In some embodiments, the method defines a routing grid for one or more double patterning layers within an IC layout. The routing grid has a plurality of vertical grid lines extending along a first direction and a plurality of horizontal grid lines extending along a second, orthogonal direction. Alternating lines of the routing grid in a given direction (e.g., the horizontal and vertical direction) are assigned different colors. Shapes on the double patterning layers are then routed along the routing grid in a manner that alternates between different colored grid lines. By routing in such a manner, variations in capacitive coupling caused by mask misalignment are reduced.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin, Tsung-Ching (Jim) Huang, Fu-Lung Hsueh