Patents by Inventor Chih-Fang Huang

Chih-Fang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964811
    Abstract: A liquid storage tank includes a housing, a piston located in the housing, a cover, an elastic element, and an outlet pipe. The cover is attached to the housing and has a support post extending toward the piston. The piston, the housing, and the cover define a tank chamber. The tank chamber is filled with cooling liquid. The elastic element is connected with the tank hosing and the piston. The elastic element is free from contact with the cooling liquid. The outlet pipe communicates with the tank chamber. An extension direction of an opening of the outlet pipe is not parallel to a direction of movement of the elastic element. When the cooling liquid is decreased, the piston compressed the tank chamber such that the elastic element is released. The tank chamber is continuously compressed by pairing the elastic element and the piston.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: April 23, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yu-Jei Huang, Wei-Fang Wu, Chia-Ying Hsu, Chih-Chieh Lu
  • Patent number: 11810974
    Abstract: A semiconductor structure includes: a U-metal-oxide-semiconductor field-effect transistor (UMOS) structure; and a trench junction barrier Schottky (TJBS) diode, wherein an insulating layer of a sidewall of the TJBS diode does not have a side gate.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 7, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chih-Fang Huang, Jia-Wei Hu, You-An Lin, Yong-Shiang Jan
  • Publication number: 20230275161
    Abstract: A semiconductor structure includes a Schottky diode structure, which includes: a first trench extending through a first N-type semiconductor layer and being disposed in the first N-type semiconductor layer; a first insulating layer disposed in the first trench; two polysilicon layers or metal silicide layers disposed in the first trench, wherein an upper one and a lower one of the polysilicon layers or metal silicide layers are disposed in parallel; a first P-type protective layer, which is grounded and disposed on a bottom of the first trench, and contacts the first insulating layer and a bottom surface of the lower one of the polysilicon layers or metal silicide layers; a metal layer respectively disposed as a top surface and a lower bottom surface of the semiconductor structure to form a source and a drain as electrodes for the semiconductor structure to be connected to an external device.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 31, 2023
    Inventors: Chih-Fang HUANG, JIA-WEI HU, FU-JEN HSU
  • Publication number: 20220199825
    Abstract: A semiconductor structure includes: a U-metal-oxide-semiconductor field-effect transistor (UMOS) structure; and a trench junction barrier Schottky (TJBS) diode, wherein an insulating layer of a sidewall of the TJBS diode does not have a side gate,
    Type: Application
    Filed: June 25, 2021
    Publication date: June 23, 2022
    Inventors: Chih-Fang HUANG, Jia-Wei HU, You-An LIN, Yong-Shiang JAN
  • Patent number: 11121235
    Abstract: A structure and a manufacturing method of a metal-oxide-semiconductor field-effect transistor with an element of IVA group ion implantation are disclosed. The element of IVA group ion implantation layer is disposed in a body and close to an interface between a gate oxide layer and the body. The element of IVA group ion implantation layer is utilized to change a property of a channel of the structure.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: September 14, 2021
    Assignee: National Tsing Hua University
    Inventors: Chih-Fang Huang, Jheng-Yi Jiang, Sheng-Hong Wang, Jia-Qing Hung
  • Publication number: 20200035810
    Abstract: A structure and a manufacturing method of a metal-oxide-semiconductor field-effect transistor with an element of IVA group ion implantation are disclosed. The element of IVA group ion implantation layer is disposed in a body and close to an interface between a gate oxide layer and the body. The element of IVA group ion implantation layer is utilized to change a property of a channel of the structure.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 30, 2020
    Inventors: Chih-Fang HUANG, Jheng-Yi JIANG, Sheng-Hong WANG, Jia-Qing HUNG
  • Publication number: 20190355847
    Abstract: A structure of a trench metal-oxide-semiconductor field-effect transistor includes an N-current spread layer (N-CSL) disposed on the N-drift region a split gate structure formed in the gate trench and covered by the insulating layer; and a semiconductor protection layer disposed below the bottom of the trench and adjacent to the N-drift region, wherein the insulating layer is disposed above the semiconductor protection layer to protect the insulating layer from being broken through by an electric field when the structure turns off a bias; wherein the gate is separated from the split gate by the insulating layer to form a predetermined gap; and a depth position of a bottom of the trench gate is deeper than an interface between the P-well and the N-current spread layer.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Chih-Fang HUANG, Jheng-Yi JIANG
  • Patent number: 10468519
    Abstract: A structure of a trench metal-oxide-semiconductor field-effect transistor includes an N-current spread layer (N-CSL) disposed on the N-drift region a split gate structure formed in the gate trench and covered by the insulating layer; and a semiconductor protection layer disposed below the bottom of the trench and adjacent to the N-drift region, wherein the insulating layer is disposed above the semiconductor protection layer to protect the insulating layer from being broken through by an electric field when the structure turns off a bias; wherein the gate is separated from the split gate by the insulating layer to form a predetermined gap; and a depth position of a bottom of the trench gate is deeper than an interface between the P-well and the N-current spread layer.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: November 5, 2019
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chih-Fang Huang, Jheng-Yi Jiang
  • Patent number: 10381474
    Abstract: A power semiconductor device includes a substrate, a main body and an electrode unit. The main body includes an active portion, an edge termination portion surrounding the active portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes a first-type semiconductor region, and a plurality of spaced-apart second-type semiconductor segments distributed in the first-type semiconductor region and arranged at intervals along a Y-direction directing from the insulating layer toward the substrate, and an X-direction directing from the active portion toward the edge termination portion. The electrode unit includes a first electrode and a second electrode.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 13, 2019
    Assignee: MACROBLOCK, INC.
    Inventors: Kung-Yen Lee, Chih-Fang Huang, Sheng-Chung Wang, Chia-Hui Cheng
  • Publication number: 20180315848
    Abstract: A structure of a trench metal-oxide-semiconductor field-effect transistor includes an N-current spread layer (N-CSL) disposed on the N-drift region a split gate structure formed in the gate trench and covered by the insulating layer; and a semiconductor protection layer disposed below the bottom of the trench and adjacent to the N-drift region, wherein the insulating layer is disposed above the semiconductor protection layer to protect the insulating layer from being broken through by an electric field when the structure turns off a bias; wherein the gate is separated from the split gate by the insulating layer to form a predetermined gap; and a depth position of a bottom of the trench gate is deeper than an interface between the P-well and the N-current spread layer.
    Type: Application
    Filed: April 24, 2018
    Publication date: November 1, 2018
    Inventors: Chih-Fang HUANG, Jheng-Yi JIANG
  • Publication number: 20180308974
    Abstract: A power semiconductor device includes a substrate, a main body and an electrode unit. The main body includes an active portion, an edge termination portion surrounding the active portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes a first-type semiconductor region, and a plurality of spaced-apart second-type semiconductor segments distributed in the first-type semiconductor region and arranged at intervals along a Y-direction directing from the insulating layer toward the substrate, and an X-direction directing from the active portion toward the edge termination portion. The electrode unit includes a first electrode and a second electrode.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 25, 2018
    Applicant: MACROBLOCK, INC.
    Inventors: Kung-Yen Lee, Chih-Fang Huang, Sheng-Chung Wang, Chia-Hui Cheng
  • Patent number: 9865676
    Abstract: A power semiconductor device includes a substrate, a main body, and an electrode unit. The main body includes an active portion disposed on the substrate, an edge termination portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes first-type semiconductor region, a second-type semiconductor region and a top surface. The first-type semiconductor region is adjacent to the active portion and has a first-type doping concentration decreased from the top surface toward the substrate. The electrode unit includes a first electrode disposed on the insulating layer, and a second electrode disposed on the substrate.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: January 9, 2018
    Assignee: MACROBLOCK, INC.
    Inventors: Chih-Fang Huang, Kung-Yen Lee, Chia-Hui Cheng, Sheng-Zhong Wang
  • Publication number: 20170207085
    Abstract: A horizontal semiconductor device includes an electrically conductive substrate having a first surface, a buffer layer disposed on the first surface of the substrate, an epitaxial unit disposed on the buffer layer opposite to the substrate, a first electrode unit disposed on the epitaxial unit, and a second electrode unit. The substrate has an exposed region that is exposed from the buffer layer and the epitaxial unit. The second electrode unit includes a first conductive member disposed on the epitaxial unit and spaced apart from the first electrode unit, and a second conductive member extending from the first conductive member to the exposed region.
    Type: Application
    Filed: June 21, 2016
    Publication date: July 20, 2017
    Applicant: National Tsing Hua University
    Inventors: Chih-Fang HUANG, Keh-Yung CHENG, Wei-Chen YANG, Ting-Fu CHANG, Po-Ju CHU, Jian-Lin LIN, Ya-Chu LIAO, Hsin-Ying TSENG
  • Publication number: 20170148870
    Abstract: A power semiconductor device includes a substrate, a main body, and an electrode unit. The main body includes an active portion disposed on the substrate, an edge termination portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes first-type semiconductor region, a second-type semiconductor region and a top surface. The first-type semiconductor region is adjacent to the active portion and has a first-type doping concentration decreased from the top surface toward the substrate. The electrode unit includes a first electrode disposed on the insulating layer, and a second electrode disposed on the substrate.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 25, 2017
    Inventors: Chih-Fang HUANG, Kung-Yen LEE, Chia-Hui CHENG, Sheng-Zhong WANG
  • Patent number: 9502602
    Abstract: A structure of high electron mobility light emitting transistor comprises a substrate, a HEMT region disposed on the substrate, and a gallium nitride LED (GaN-LED) region disposed on the substrate. A two-dimensional electron gas layer is present in each of the HEMI region and the LED region, and the HEMT region is coupled to the LED region through the two-dimensional electron gas layer.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 22, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chih-Fang Huang, Yi-Chen Li, Ting-Fu Chang, Keh-Yung Cheng, Yu-Li Wang, Chun-Hung Wu, Wei-Chen Yang, Shao-Yen Chiu
  • Patent number: 9412807
    Abstract: A semiconductor structure comprises a substrate, an epitaxial layer, an active area and a termination. The substrate has a first conducting type of semiconductor material. The epitaxial layer disposed on the substrate has a first conducting type of semiconductor material. The active area is a working area of the semiconductor structure. The termination protects the active area. The termination has a junction termination extension (JTE) having a second conducting type of semiconductor material. The counter-doped area is disposed in the JTE area and has the first conducting type of semiconductor material. A dose of the first conducting type of semiconductor material in the counter-doped area increases along one direction.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 9, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chih-Fang Huang, Ting-Fu Chang, Hua-Chih Hsu, Jheng-Yi Jiang
  • Publication number: 20160190384
    Abstract: A structure of high electron mobility light emitting transistor comprises a substrate, a HEMT region disposed on the substrate, and a gallium nitride LED (GaN-LED) region disposed on the substrate. A two-dimensional electron gas layer is present in each of the HEMI region and the LED region, and the HEMT region is coupled to the LED region through the two-dimensional electron gas layer.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Chih-Fang HUANG, Yi-Chen LI, Ting-Fu CHANG, Keh-Yung CHENG, Yu-Li WANG, Chun-Hung WU, Wei-Chen YANG, Shao-Yen CHIU
  • Patent number: 9362381
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: June 7, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20160111519
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 21, 2016
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9252219
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 2, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng