Patents by Inventor Chih-Yuan Chen

Chih-Yuan Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978773
    Abstract: A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a stack of channel structures over a base structure. The semiconductor device structure also includes a first epitaxial structure and a second epitaxial structure sandwiching the channel structures. The semiconductor device structure further includes a gate stack wrapped around each of the channel structures and a backside conductive contact connected to the second epitaxial structure. A first portion of the backside conductive contact is directly below the base structure, and a second portion of the backside conductive contact extends upwards to approach a bottom surface of the second epitaxial structure. In addition, the semiconductor device structure includes an insulating spacer between a sidewall of the base structure and the backside conductive contact.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Shih-Chuan Chiu, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 11980040
    Abstract: A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tai-Yen Peng, Tsung-Hsien Chang, Yu-Shu Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Chung-Te Lin
  • Patent number: 11973110
    Abstract: A semiconductor structure includes a substrate and a first capacitor. The substrate includes an active region. The first capacitor is over the substrate and free from overlapping the active region from a top view perspective.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Che-Yuan Chang, Hui-Zhong Zhuang, Chih-Liang Chen
  • Publication number: 20240132330
    Abstract: Motor control architecture including a travel, a hoist, and a controller is disclosed. The travel disposed on a main rail having an auxiliary-encoder includes a master-driver and a slave-driver for driving two motors. Each motor has a main-encoder. The hoist drives a rope and calculates a rope length continuously. The controller calculates an anti-sway position command based on the rope-length and a position command. The two drivers perform a full closed-loop computation based on a feedback of one main-encoder, a feedback of the auxiliary-encoder, and the anti-sway position command. Wherein, the master-driver controls one motor based on a speed command generated by the full closed-loop computation and the slave-driver follows the speed command and a torque command of the master-driver to drive another motor; or the two drivers compensate the torque command based on an error value between the feedback of one main-encoder and the feedback of the auxiliary-encoder.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Inventors: Huan-Chang CHEN, Po-Jen KO, Chun-Ju WU, Lon-Jay CHENG, Wan-Ping CHEN, Chih-Yuan CHANG
  • Patent number: 11961761
    Abstract: One or more techniques or systems for mitigating pattern collapse are provided herein. For example, a semiconductor structure for mitigating pattern collapse is formed. In some embodiments, the semiconductor structure includes an extreme low-k (ELK) dielectric region associated with a via or a metal line. For example, a first metal line portion and a second metal line portion are associated with a first lateral location and a second lateral location, respectively. In some embodiments, the first portion is formed based on a first stage of patterning and the second portion is formed based on a second stage of patterning. In this manner, pattern collapse associated with the semiconductor structure is mitigated, for example.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chih-Yuan Ting, Ya-Lien Lee, Chung-Wen Wu, Jeng-Shiou Chen
  • Publication number: 20240120391
    Abstract: Embodiments of the present disclosure provide semiconductor device structures and methods of forming the same. The structure includes a first source/drain region disposed under a well portion, a second source/drain region disposed adjacent the first source/drain region, a dielectric material disposed between the first and second source/drain regions, and a conductive contact having a first portion disposed under the first source/drain region and a second portion disposed adjacent the first source/drain region. The second portion is disposed in the dielectric material. The structure further includes a conductive feature disposed in the dielectric material, and the conductive feature is electrically connected to the conductive contact. The conductive feature has a top surface that is substantially coplanar with a top surface of the well portion.
    Type: Application
    Filed: January 19, 2023
    Publication date: April 11, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Chih-Hao WANG
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Publication number: 20240113113
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Patent number: 11943584
    Abstract: A micro-electro-mechanical system (MEMS) microphone is provided. The MEMS microphone includes a substrate, a diaphragm, a backplate and a first protrusion. The substrate has an opening portion. The diaphragm is disposed on one side of the substrate and extends across the opening portion of the substrate. The backplate includes a plurality of acoustic holes. The backplate is disposed on one side of the diaphragm. An air gap is formed between the backplate and the diaphragm. The first protrusion extends from the backplate towards the air gap.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: March 26, 2024
    Assignee: FORTEMEDIA, INC.
    Inventors: Chih-Yuan Chen, Jien-Ming Chen, Feng-Chia Hsu, Wen-Shan Lin, Nai-Hao Kuo
  • Patent number: 11942441
    Abstract: A semiconductor device includes a through-silicon via (TSV) in a TSV zone in a substrate and the TSV extends through the substrate; an ESD cell proximal to a first end of the TSV and in contact with the TSV zone, the ESD cell including a set of diodes electrically connected in parallel to each other; an antenna pad electrically connected to a second end of the TSV; and an antenna electrically connected to the antenna pad and extending in a first direction, the first direction is parallel to a major axis of the TSV. The semiconductor device includes a conductive pillar extending parallel to the TSV at a same side of the substrate as the antenna pad, wherein a first end of the conductive pillar electrically connects to the antenna pad, and a second end of the conductive pillar electrically connects to the set of diodes of the ESD cell.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: March 26, 2024
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC CHINA COMPANY, LIMITED
    Inventors: HoChe Yu, Fong-Yuan Chang, XinYong Wang, Chih-Liang Chen, Tzu-Heng Chang
  • Patent number: 11942530
    Abstract: The present disclosure relates to a semiconductor device having a backside source/drain contact, and method for forming the device. The semiconductor device includes a source/drain feature having a top surface and a bottom surface, a first silicide layer formed in contact with the top surface of the source/drain feature, a first conductive feature formed on the first silicide layer, and a second conductive feature having a body portion and a first sidewall portion extending from the body portion, wherein the body portion is below the bottom surface of the source/drain feature, and the first sidewall portion is in contact with the first conductive feature.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Yuan Chen, Pei-Yu Wang, Huan-Chieh Su, Chih-Hao Wang
  • Publication number: 20240095467
    Abstract: Translating applications to a target language includes extracting program integrated information (PII) to be translated and creating translation context datasets based on interpretation of accessibility information associated with particular strings of PII. Translation pairs include PII and corresponding context datasets for context-based translation of application components. A two-stage index contains PII strings for first stage lookup and context datasets for distinguishing duplicate PII strings as a second stage lookup. Real-time translation is facilitated by the two-stage index, which is established by translation pairs and resulting translations.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: CHIH-YUAN LIN, Jin Shi, Shu-Chih Chen, PEI-YI LIN, Chao Yuan Huang
  • Publication number: 20240096800
    Abstract: A semiconductor device includes first and second active regions extending in parallel in a substrate, a plurality of conductive patterns, each conductive pattern of the plurality of conductive patterns extending on the substrate across each of the first and second active regions, and a plurality of metal lines, each metal line of the plurality of metal lines overlying and extending across each of the first and second active regions. Each conductive pattern of the plurality of conductive patterns is electrically connected in parallel with each metal line of the plurality of metal lines.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Fei Fan DUAN, Fong-yuan CHANG, Chi-Yu LU, Po-Hsiang HUANG, Chih-Liang CHEN
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240096996
    Abstract: A semiconductor device includes a first dielectric layer, a stack of semiconductor layers disposed over the first dielectric layer, a gate structure wrapping around each of the semiconductor layers and extending lengthwise along a direction, and a dielectric fin structure and an isolation structure disposed on opposite sides of the stack of semiconductor layers and embedded in the gate structure. The dielectric fin structure has a first width along the direction smaller than a second width of the isolation structure along the direction. The isolation structure includes a second dielectric layer extending through the gate structure and the first dielectric layer, and a third dielectric layer extending through the first dielectric layer and disposed on a bottom surface of the gate structure and a sidewall of the first dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Lo-Heng Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240085808
    Abstract: A particle removal method includes loading a particle attracting member with a coating layer into a processing chamber of a processing apparatus. The processing chamber is configured to perform a lithography exposure process on a semiconductor wafer. The method also includes fixing the particle attracting member on a reticle holder in the processing chamber in a cleaning cycle, attracting particles in the processing chamber by the coating layer of the particle attracting member due to a potential difference between the particles and the coating layer, and loading the particle attracting member with the coating layer and the attracted particles out of the processing chamber, after the cleaning cycle. The method also includes loading the semiconductor wafer into the processing chamber, and performing the lithography exposure process on the semiconductor wafer in the processing chamber using a reticle fixed on the reticle holder after the cleaning cycle.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Chih-Yuan YAO, Yu-Yu CHEN, Hsiang-Lung TSOU
  • Publication number: 20240088001
    Abstract: A semiconductor device package includes a carrier, an electronic component, a connection element and an encapsulant. The electronic component is disposed on a surface of the carrier. The connection element is disposed on the surface and adjacent to an edge of the carrier. The encapsulant is disposed on the surface of the carrier. A portion of the connection element is exposed from an upper surface and an edge of the encapsulant.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 14, 2024
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Cheng-Lin HO, Chih-Cheng LEE, Chun Chen CHEN, Cheng Yuan CHEN
  • Publication number: 20240086612
    Abstract: An IC device includes first through third rows of fin field-effect transistors (FinFETs), wherein the second row is between and adjacent to each of the first and third rows, the FinFETs of the first row are one of an n-type or p-type, the FinFETs of the second and third rows are the other of the n-type or p-type, the FinFETs of the first and third rows include a first total number of fins, and the FinFETs of the second row include a second total number of fins one greater or fewer than the first total number of fins.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Po-Hsiang HUANG, Fong-Yuan CHANG, Clement Hsingjen WANN, Chih-Hsin KO, Sheng-Hsiung CHEN, Li-Chun TIEN, Chia-Ming HSU
  • Patent number: 11929434
    Abstract: A switch device includes a P-type substrate, a first gate structure, a first N-well, a shallow trench isolation structure, a first P-well, a second gate structure, a first N-type doped region, a second P-well, and a second N-type doped region. The first N-well is formed in the P-type substrate and partly under the first gate structure. The shallow trench isolation structure is formed in the first N-well and under the first gate structure. The first P-well is formed in the P-type substrate and under the first gate structure. The first N-type doped region is formed in the P-type substrate and between the first gate structure and the second gate structure. The second P-well is formed in the P-type substrate and under the second gate structure. The second N-type doped region is formed in the second P-well and partly under the second gate structure.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: March 12, 2024
    Assignee: eMemory Technology Inc.
    Inventors: Chih-Hsin Chen, Shih-Chen Wang, Tsung-Mu Lai, Wen-Hao Ching, Chun-Yuan Lo, Wei-Chen Chang