Patents by Inventor Chihiro Hiraiwa

Chihiro Hiraiwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9325024
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 26, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 9276241
    Abstract: The case for a molten salt battery is used for a molten salt battery containing as an electrolyte a molten salt containing sodium ions. The case is formed of aluminum or an aluminum alloy containing 90% by mass or more of aluminum.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 1, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koji Nitta, Shoichiro Sakai, Shinji Inazawa, Chihiro Hiraiwa, Atsushi Fukunaga, Masatoshi Majima
  • Publication number: 20150263355
    Abstract: Provided are a fuel cell that employs a fuel-electrode collector excellent in terms of thermal conductivity and the like, so that it is excellent in terms of power generation efficiency and cost effectiveness; and a method for operating the fuel cell. Included are a membrane electrode assembly (MEA), a fuel-electrode collector that is a porous metal body disposed in contact with a fuel electrode and performing current collection,and a heating device operated by electric power, wherein a solid electrolyte is a proton-permeable electrolyte, a fuel-gas channel is provided to cause a fuel gas to pass through the fuel-electrode collector, and the porous metal body constituting the fuel-electrode collector is formed of aluminum or aluminum alloy.
    Type: Application
    Filed: October 4, 2013
    Publication date: September 17, 2015
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Akihisa Hosoe
  • Patent number: 9132384
    Abstract: Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 15, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 9136552
    Abstract: Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 15, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20150147674
    Abstract: An object is to provide a solid electrolyte laminate that allows a large amount of gas to be supplied to a fuel electrode while having improved strength and a method for manufacturing such a solid electrolyte laminate. A solid electrolyte laminate 1 includes a solid electrolyte layer 2, a first electrode layer 3 disposed on one side of the solid electrolyte layer, and a second electrode layer 4 disposed on another side of the solid electrolyte layer. At least the first electrode layer, which forms a fuel electrode, includes a bonding layer 3a bonded to the solid electrolyte layer and a porous layer 3b having continuous pores and integrally formed on the bonding layer.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 28, 2015
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara
  • Publication number: 20150044597
    Abstract: Provided is a solid electrolyte made of yttrium-doped barium zirconate having hydrogen ion conductivity, a doped amount of yttrium being 15 mol % to 20 mol %, and a rate of increase in lattice constant at 100° C. to 1000° C. with respect to temperature changes being substantially constant. Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte can be formed as a thin film, and a solid electrolyte laminate can be obtained by laminating electrode layers on this solid electrolyte. This solid electrolyte can be applied to an intermediate temperature operating fuel cell.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 12, 2015
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara, Tetsuya Uda, Donglin Han, Akiko Kuramitsu
  • Publication number: 20150044596
    Abstract: Provided is a solid electrolyte laminate comprising a solid electrolyte layer having proton conductivity and a cathode electrode layer laminated on one side of the solid electrolyte layer and made of lanthanum strontium cobalt oxide (LSC). Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte laminate can further comprise an anode electrode layer made of nickel-yttrium doped barium zirconate (Ni—BZY). This solid electrolyte laminate is suitable for a fuel cell operating in an intermediate temperature range less than or equal to 600° C.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 12, 2015
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Atsushi Yamaguchi, Naho Mizuhara, Tetsuya Uda, Yohei Noda
  • Patent number: 8916033
    Abstract: A gas decomposition apparatus having any one of the following structures: 1) a structure wherein an anode and a cathode on a solid electrolyte layer each have extended regions; the extended regions of the anode and those of the cathode are alternately extended to have a gap between the anode and the cathode; the cathode is higher in electric resistance than the anode; and a cathode electroconductive region connected electroconductively to a power source and made of an electroconductive material is extended in a direction crossing the direction in which the extended regions of the cathode are extended, thereby connecting the extended regions of the cathode electroconductively to each other; and (2) a structure which has an electroconductor layer through which the negative electrode of a power source is electroconductively connected to a cathode; and which is a structure wherein the cathode is laminated on the electroconductor layer to contact the layer, laminates each composed of a solid electrolyte layer and
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: December 23, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Koji Nitta, Atsushi Fukunaga, Shigeki Egashira
  • Patent number: 8865367
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Patent number: 8685571
    Abstract: A separator of a molten salt battery made of a porous resin sheet. The separator is improved in wettability to a molten salt by giving hydrophilicity to the resin sheet. In the case of a fluororesin sheet, the sheet is impregnated with water, and irradiated with ultraviolet rays so that C—F bonds in the fluororesin are cleaved and the resultant reacts with water to generate hydrophilic groups, such as OH groups, in each surface layer thereof. The separator gains hydrophilicity through the hydrophilic groups. The separator made of the resin can be made into a bag form. In a molten salt battery having the bag-form separator, the growth of a dendrite is prevented.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Atsushi Fukunaga, Shoichiro Sakai, Chihiro Hiraiwa, Koji Nitta, Masatoshi Majima, Shinji Inazawa
  • Publication number: 20130260280
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Application
    Filed: November 29, 2011
    Publication date: October 3, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130224612
    Abstract: Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 29, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130171542
    Abstract: A gas decomposition component includes a cylindrical membrane electrode assembly (MEA) including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure, wherein an end portion of the cylindrical MEA is sealed, a gas guide pipe is inserted through another end portion of the cylindrical MEA into an inner space of the cylindrical MEA to form a cylindrical channel between the gas guide pipe and an inner circumferential surface of the cylindrical MEA, and a gas flowing through the gas guide pipe toward the sealed portion is made to flow out of the gas guide pipe in a region near the sealed portion so that a flow direction of the gas is reversed and the gas flows through the cylindrical channel in a direction opposite to the flow direction in the guide pipe.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 4, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130101920
    Abstract: Provided are a catalyst, an electrode, a fuel cell, a gas detoxification apparatus, and the like that can promote a general electrochemical reaction causing gas decomposition or the like. A catalyst according to the present invention is used for promoting an electrochemical reaction and is chain particles 3 formed of an alloy particles containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu).
    Type: Application
    Filed: June 27, 2012
    Publication date: April 25, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20130101919
    Abstract: Provided are a MEA, a fuel cell, and a gas detoxification apparatus that allow at high efficiency a general electrochemical reaction causing gas decomposition or the like and are excellent in cost efficiency; and a method for producing a MEA. In this MEA 7, a porous base 3, a porous anode 2, an ion-conductive solid electrolyte 1, and a porous cathode 5 are stacked. The anode 2 or the cathode 5 is in contact with a surface of the porous base 3. The porous anode 2 includes a metal deposit body 21 having catalysis for gas decomposition.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 25, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu
  • Publication number: 20130089810
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction to reduce the running cost and can have high treatment performance. A gas decomposition component includes a cylindrical-body MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1; and a porous metal body 11s that is inserted on the inner-surface side of the cylindrical-body MEA and is electrically connected to the anode 2, wherein a metal mesh sheet 11a is disposed between the anode 2 and the porous metal body 11s. Another gas decomposition component includes the cylindrical MEA 7 and silver-paste-coated wiring 12g formed on the cathode 5, wherein the silver-paste-coated wiring 12g is a porous body.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Toshiyuki Kuramoto, Toshio Ueda, Tomoyuki Awazu
  • Publication number: 20130089806
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20130084514
    Abstract: Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 4, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20120228126
    Abstract: A gas decomposition apparatus having any one of the following structures: 1) a structure wherein an anode and a cathode on a solid electrolyte layer each have extended regions; the extended regions of the anode and those of the cathode are alternately extended to have a gap between the anode and the cathode; the cathode is higher in electric resistance than the anode; and a cathode electroconductive region connected electroconductively to a power source and made of an electroconductive material is extended in a direction crossing the direction in which the extended regions of the cathode are extended, thereby connecting the extended regions of the cathode electroconductively to each other; and (2) a structure which has an electroconductor layer through which the negative electrode of a power source is electroconductively connected to a cathode; and which is a structure wherein the cathode is laminated on the electroconductor layer to contact the layer, laminates each composed of a solid electrolyte layer and
    Type: Application
    Filed: November 4, 2010
    Publication date: September 13, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Koji Nitta, Atsushi Fukunaga, Shigeki Egashira