Patents by Inventor Chihiro Hiraiwa

Chihiro Hiraiwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120208068
    Abstract: A separator of a molten salt battery made of a porous resin sheet. The separator is improved in wettability to a molten salt by giving hydrophilicity to the resin sheet. In the case of a fluororesin sheet, the sheet is impregnated with water, and irradiated with ultraviolet rays so that C—F bonds in the fluororesin are cleaved and the resultant reacts with water to generate hydrophilic groups, such as OH groups, in each surface layer thereof. The separator gains hydrophilicity through the hydrophilic groups. The separator made of the resin can be made into a bag form. In a molten salt battery having the bag-form separator, the growth of a dendrite is prevented.
    Type: Application
    Filed: October 4, 2011
    Publication date: August 16, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Atsushi Fukunaga, Shoichiro Sakai, Chihiro Hiraiwa, Koji Nitta, Masatoshi Majima, Shinji Inazawa
  • Publication number: 20120171537
    Abstract: Provided is a molten salt battery which can be stably charged and discharged. A separator 3 composed of a rectangular plate-shaped glass cloth and containing a molten salt is interposed between a positive electrode 1 and a negative electrode 2 having a rectangular plate shape to form a power generating element X. A battery container 5 is configured to be substantially rectangular parallelepiped-shaped. A non-flexible presser plate 4b pressed by a spring 4a arranged at a negative electrode 2 side in the battery container 5 substantially evenly disperses pressing force from the spring 4a and presses the negative electrode 2 downward. As a result of the reaction, a bottom wall 52 of the battery container presses the positive electrode 1 upward so that no dead space is generated even when a plurality of batteries are combined.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Shoichiro Sakai, Masatoshi Majima, Koji Nitta, Chihiro Hiraiwa, Atsushi Fukunaga, Shinji Inazawa
  • Publication number: 20120171524
    Abstract: In a molten salt battery device, molten salt batteries are arranged in a container to cause a space to be present around the molten salt batteries, and a heating medium is filled into the space around the molten salt batteries. When an electrothermal heater is used to control the temperature of the heating medium through a temperature controlling section, the heating medium is caused to flow. Between the flowing heating medium and the molten salt batteries, heat is exchanged, whereby the molten salt battery device controls the temperature of the molten salt batteries. Since the molten salt batteries attain the heat exchange with the heating medium, which surrounds the batteries, the internal temperature thereof is evenly controlled. Moreover, the molten salt battery device makes it possible to lower the temperature of the heating medium to cool the molten salt batteries easily.
    Type: Application
    Filed: October 4, 2011
    Publication date: July 5, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Koji Nitta, Shoichiro Sakai, Atsushi Fukunaga, Shinji Inazawa
  • Publication number: 20120129056
    Abstract: In a molten salt battery 1, a positive electrode 2 including an active material film 22 arranged on an Al collector 21, a separator 3 formed of a glass cloth impregnated with a molten salt serving as an electrolyte, and a negative electrode 4 including an active material film 43 and a Zn film 42 arranged on an Al collector 41 are accommodated in an Al case 5. The active material film 43 contains an active material composed of a Sn—Na alloy. The active material film 22 and the active material film 43 occlude and emit Na ions of the molten salt. Thereby, provided are a negative electrode material for a battery, the negative electrode material having higher hardness on a surface side (active material side) than a Na negative electrode during the operation of the battery, suppressing the formation of Na dendrites.
    Type: Application
    Filed: September 7, 2011
    Publication date: May 24, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Masatoshi Majima, Shinji Inazawa, Shoichiro Sakai, Koji Nitta, Atsushi Fukunaga, Chihiro Hiraiwa
  • Publication number: 20120115002
    Abstract: To provide a molten salt battery which is highly safe and has long charge/discharge cycle life. The molten salt battery of the present invention includes a negative electrode 1 in which a negative electrode active material 12 is predominantly composed of carbon such as hard carbon. The negative electrode active material 12 is surface-treated for imparting hydrophilicity to the negative electrode active material 12 to improve the affinity for the molten salt. Further, a transition metal such as iron is added to the negative electrode active material 12 predominantly composed of hard carbon in order to enhance the affinity for the active material. The molten salt battery has higher safety in production and use and longer charge/discharge cycle life than conventional molten salt batteries using metallic sodium as an electrode.
    Type: Application
    Filed: October 4, 2011
    Publication date: May 10, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Atsushi Fukunaga, Shoichiro Sakai, Chihiro Hiraiwa, Koji Nitta, Masatoshi Majima, Shinji Inazawa
  • Publication number: 20120100416
    Abstract: The case for a molten salt battery is used for a molten salt battery containing as an electrolyte a molten salt containing sodium ions. The case is formed of aluminum or an aluminum alloy containing 90% by mass or more of aluminum.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 26, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koji NITTA, Shoichiro Sakai, Shinji Inazawa, Chihiro Hiraiwa, Atsushi Fukunaga, Masatoshi Majima
  • Patent number: 8085465
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 27, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tatsuya Izumi, Chihiro Hiraiwa
  • Publication number: 20110164142
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Application
    Filed: January 31, 2011
    Publication date: July 7, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tatsuya Izumi, Chihiro Hiraiwa
  • Patent number: 7911688
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 22, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tatsuya Izumi, Chihiro Hiraiwa
  • Patent number: 7859747
    Abstract: A small-sized and low-cost infrared zoom lens while maintaining the brightness of an image and relevant arts to the infrared zoom lens is provided. The infrared zoom lens 1a is made up of first to third lens groups G1 to G3 formed of zinc sulfide. The first lens group G1 is made up of one or two lenses and has a positive refractive power. The second lens group G2 is made up of one or two lenses and has a negative refractive power. The third lens group G3 is made up of two or more lenses and has a positive refractive power as the whole lens group and also includes a positive meniscus lens with a convex face pointed at the object side as a final lens on the image surface side. At the zooming time, the second lens group G2 is moved along the optical axis. At least one of the lens surfaces of the first to third lens groups G1 to G3 is a diffraction surface. At least one of the lens surfaces of the first and third lens groups G1 and G3 is an aspheric surface.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Hiraiwa, Tatsuya Izumi
  • Publication number: 20100187418
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 29, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tatsuya IZUMI, Chihiro HIRAIWA
  • Patent number: 7738169
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: June 15, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tatsuya Izumi, Chihiro Hiraiwa
  • Publication number: 20090168153
    Abstract: A small-sized and low-cost infrared zoom lens while maintaining the brightness of an image and relevant arts to the infrared zoom lens is provided. The infrared zoom lens 1a is made up of first to third lens groups G1 to G3 formed of zinc sulfide. The first lens group G1 is made up of one or two lenses and has a positive refractive power. The second lens group G2 is made up of one or two lenses and has a negative refractive power. The third lens group G3 is made up of two or more lenses and has a positive refractive power as the whole lens group and also includes a positive meniscus lens with a convex face pointed at the object side as a final lens on the image surface side. At the zooming time, the second lens group G2 is moved along the optical axis. At least one of the lens surfaces of the first to third lens groups G1 to G3 is a diffraction surface. At least one of the lens surfaces of the first and third lens groups G1 and G3 is an aspheric surface.
    Type: Application
    Filed: February 21, 2007
    Publication date: July 2, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Tatsuya Izumi
  • Publication number: 20090027766
    Abstract: An infrared lens 1a includes first to third lenses L1 to L3 which are made of zinc sulfide and arranged in this order from an object side. Each of the first to third lenses L1 to L3 is configured as a positive meniscus lens of which convex surface is opposed to the object. The lenses L1 to L3 are formed by heat-press molding raw powder of zinc sulfide using a lens-shaped mold. In addition, a concave surface (the surface opposed to the image side) of the first lens L1 is formed as a diffractive surface.
    Type: Application
    Filed: November 7, 2006
    Publication date: January 29, 2009
    Inventors: Tatsuya Izumi, Chihiro Hiraiwa