Patents by Inventor Chin-Wei Kuo

Chin-Wei Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9087840
    Abstract: A strip-line includes a ground plane extending through a plurality of dielectric layers over a substrate; a signal line over the substrate and on a side of the ground plane; a first plurality of metal strips under the signal line and in a first metal layer, wherein the first plurality of metal strips is parallel to each other, and is spaced apart from each other by spaces; and a second plurality of metal strips under the signal line and in a second metal layer over the first metal layer. The second plurality of metal strips vertically overlaps the spaces. The first plurality of metal strips is electrically coupled to the second plurality of metal strips through the ground plane, and no via physically contacts the first plurality of metal strips and the second plurality of metal strips.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chin-Wei Kuo, Chewn-Pu Jou
  • Publication number: 20150166346
    Abstract: In a method of fabricating graphite films, mesophase pitch, a polymer material and an organic solvent are used to produce a carbon precursor slurry, and the carbon precursor slurry is coated to produce the graphite films. Since the method of using natural graphite as a raw material in production requires a number of purification processes to manufacture an expanded graphite powder before the graphite films can be produced, and thus the fabricating cost is very high, and other high-priced materials such as polyimide (PI) or graphene also will increase the total cost.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Chung-Shan Institute of Science and Technology, Armaments Bureau, M.N.D
    Inventors: Hsin-Ping Chang, Cheng-Jung Ko, Chin-Wei Kuo, Chuen-Ming Gee, Pai-Lu Wang, Ching-Jang Lin, Dam-Ming Chiou
  • Patent number: 9059026
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: June 16, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Hsien-Pin Hu, Sally Liu, Ming-Fa Chen, Jhe-Ching Lu
  • Patent number: 9041152
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. A magnetic layer is positioned within the coil. In another embodiment, a coil is formed on a single substrate, wherein a magnetic layer is positioned within the coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Luo, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20150123244
    Abstract: A differential MOS capacitor includes a first plurality of upper capacitor plates, a second plurality of upper capacitor plates, and a conductive plate. At least two of the second plurality of upper capacitor plates are spaced laterally from each other and are disposed laterally between at least two of the first plurality of upper capacitor plates. The conductive plate is configured to serve as a common bottom capacitor plate such that a first capacitor is formed by the first plurality of upper capacitor plates and the conductive plate and a second capacitor is formed by the second plurality of upper capacitor plates and the conductive plate.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Hsiao-Tsung YEN, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG
  • Publication number: 20150108603
    Abstract: Semiconductor devices and methods of formation are provided herein. A semiconductor device includes a first inductor, a patterned ground shielding (PGS) proximate the first inductor comprising one or more portions and a first switch configured to couple a first portion of the PGS to a second portion of the PGS. The semiconductor device also has a configuration including a first inductor on a first side of the PGS, a second inductor on a second side of the PGS and a first switch configured to couple a first portion of the PGS to a second portion of the PGS. Selective coupling of portions of the PGS by activating or deactivating switches alters the behavior of the first inductor, or the behavior and interaction between the first inductor and the second inductor. A mechanism is thus provided for selectively configuring a PGS to control inductive or other properties of a circuit.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Kung-Hao Liang, Chin-Wei Kuo
  • Patent number: 8975979
    Abstract: An electronic device comprises first, second and third inductors connected in series and formed in a metal layer over a semiconductor substrate. The first and second inductors have a mutual inductance with each other. The second and third inductors having a mutual inductance with each other. A first capacitor has a first electrode connected to a first node. The first node is conductively coupled between the first and second inductors. A second capacitor has a second electrode connected to a second node. The second node is conductively coupled between the second and third inductors.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Ying-Ta Lu, Chin-Wei Kuo, Ho-Hsiang Chen
  • Patent number: 8946832
    Abstract: A representative filter comprises a silicon-on-insulator substrate having a top surface, a metal shielding positioned above the top surface of the silicon-on-insulator substrate, and a band-pass filter device positioned above the metal shielding. The band-pass filter device includes a first port, a second port, and a coupling metal positioned between the first and second ports.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Chin-Wei Kuo
  • Publication number: 20150031184
    Abstract: A method of manufacturing a package may include: providing a first device having a first redistribution layer (RDL) and an insulator layer disposed over the first RDL; and forming a first micro-bump line over the insulator layer of the first device. The first micro-bump line may extend laterally over a surface of the insulator layer facing away from the first RDL, and a first inductor of the package comprises the first RDL and the first micro-bump line.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Hsiao-Tsung Yen, Min-Chie Jeng, Hsien-Pin Hu, Tzuan-Horng Liu, Chin-Wei Kuo, Chung-Yu Lu, Yu-Ling Lin
  • Patent number: 8941212
    Abstract: The present disclosure relates to a multi-level integrated inductor that provides for a good inductance and Q-factor. In some embodiments, the integrated inductor has a first inductive structure with a first metal layer disposed in a first spiral pattern onto a first IC die and a second inductive structure with a second metal layer disposed in a second spiral pattern onto a second IC die. The first IC die is vertically stacked onto the second IC die. A conductive interconnect structure is located vertically between the first and second IC die and electrically connects the first metal layer to the second metal layer. The conductive interconnect structure provides for a relatively large distance between the first and second inductive structures that provides for an inductance having a high Q-factor over a large range of frequencies.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140374875
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Hsien-Pin Hu, Sally Liu, Ming-Fa Chen, Jhe-Ching Lu
  • Patent number: 8912581
    Abstract: A transmission line structure for semiconductor RF and wireless circuits, and method for forming the same. The transmission line structure includes embodiments having a first die including a first substrate, a first insulating layer, and a ground plane, and a second die including a second substrate, a second insulating layer, and a signal transmission line. The second die may be positioned above and spaced apart from the first die. An underfill is disposed between the ground plane of the first die and the signal transmission line of the second die. Collectively, the ground plane and transmission line of the first and second die and underfill forms a compact transmission line structure. In some embodiments, the transmission line structure may be used for microwave applications.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Feng Wei Kuo, Ho-Hsiang Chen, Chin-Wei Kuo
  • Patent number: 8901752
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8901714
    Abstract: An integrated circuit device includes a semiconductor body, active components formed over the semiconductor body, one or more seal rings surrounding the active components, and a signal line. One or more of the seal rings are configured to provide the primary return path for current flowing through the signal line.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Wei Luo, Chin-Wei Kuo, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 8896094
    Abstract: Methods and apparatus for forming a semiconductor device package with inductors and transformers using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top die and a bottom die, or between a die and an interposer. An inductor can be formed by a redistribution layer within a bottom device and a micro-bump line above the bottom device connected to the RDL. The inductor may be a symmetric inductor, a spiral inductor, a helical inductor which is a vertical structure, or a meander inductor. A pair of inductors with micro-bump lines can form a transformer.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chung-Yu Lu, Chin-Wei Kuo, Tzuan-Horng Liu, Hsien-Pin Hu, Min-Chie Jeng
  • Publication number: 20140327005
    Abstract: An apparatus for de-embedding through substrate vias is provided. The apparatus may include pads on a first side of a substrate are coupled to through vias extending through a substrate, wherein pairs of the through vias are interconnected by transmission lines of varying lengths along a second side of the substrate. The apparatus may further include pairs of pads coupled together by transmission lines of the same varying lengths. Apparatuses may include through vias surrounding a through via device under test. The surrounding through vias are connected to the through via device under test by a backside metal layer. The apparatus may further include a dummy structure having an area equal to an area of the backside metal layer.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Hsiao-Tsung Yen, Min-Chie Jeng, Victor Chih Yuan Chang, Chin-Wei Kuo, Yu-Ling Lin
  • Patent number: 8860114
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20140278197
    Abstract: Some embodiments relate to a wafer. The wafer includes a first dummy component comprising two or more first dummy component transmission lines. One of the first dummy component transmission lines operably couples a first signal test pad to a second signal test pad, and an other of the first dummy component transmission lines operably couples a third signal test pad to a fourth signal test pad. A second dummy component comprises two or more second dummy component transmission lines. One of the second dummy component transmission lines operably couples a fifth signal test pad to a sixth signal test pad, and an other of the second dummy component transmission lines operably couples a seventh signal test pad to an eighth signal test pad. Other embodiments are also disclosed.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Chih-Yuan Chang, Min-Chie Jeng
  • Publication number: 20140264734
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. A magnetic layer is positioned within the coil. In another embodiment, a coil is formed on a single substrate, wherein a magnetic layer is positioned within the coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Application
    Filed: July 3, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Luo, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140264742
    Abstract: A structure includes first, second, and third conductive leaf structures. The first conductive leaf structure includes a first conductive midrib and conductive veins. The second conductive leaf structure is electrically connected to the first conductive leaf structure, and includes a second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending away from the first conductive midrib. The third conductive leaf structure includes a third conductive midrib between the first conductive midrib and the second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending toward the second conductive midrib.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 18, 2014
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Jun-Cheng Huang, Chin-Wei Kuo, Min-Chie Jeng