Patents by Inventor Ching-Hua Chiu

Ching-Hua Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955460
    Abstract: In accordance with some embodiments, a package-on-package (PoP) structure includes a first semiconductor package having a first side and a second side opposing the first side, a second semiconductor package having a first side and a second side opposing the first side, and a plurality of inter-package connector coupled between the first side of the first semiconductor package and the first side of the second semiconductor package. The PoP structure further includes a first molding material on the second side of the first semiconductor package. The second side of the second semiconductor package is substantially free of the first molding material.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Da Tsai, Meng-Tse Chen, Sheng-Feng Weng, Sheng-Hsiang Chiu, Wei-Hung Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240107682
    Abstract: An embodiment composite material for semiconductor package mount applications may include a first component including a tin-silver-copper alloy and a second component including a tin-bismuth alloy or a tin-indium alloy. The composite material may form a reflowed bonding material having a room temperature tensile strength in a range from 80 MPa to 100 MPa when subjected to a reflow process. The reflowed bonding material may include a weight fraction of bismuth that is in a range from approximately 4% to approximately 15%. The reflowed bonding material may an alloy that is solid solution strengthened by a presence of bismuth or indium that is dissolved within the reflowed bonding material or a solid solution phase that includes a minor component of bismuth dissolved within a major component of tin. In some embodiments, the reflowed bonding material may include intermetallic compounds formed as precipitates such as Ag3Sn and/or Cu6Sn5.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Wei Chiu, Chih-Chiang Tsao, Jen-Jui Yu, Hsuan-Ting Kuo, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20240096740
    Abstract: Provided is a package structure including a first redistribution layer (RDL) structure, a die, a circuit substrate, and a first thermoelectric cooler. The RDL) structure has a first side and a second side opposite to each other. The die is disposed on the first side of the first RDL structure. The circuit substrate is bonded to the second side of the first RDL structure through a plurality of first conductive connectors. The first thermoelectric cooler is between the first RDL structure and the circuit substrate, wherein the first thermoelectric cooler includes at least a N-type doped region and at least a P-type doped region.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Wei Chiu, Chao-Wei Li, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20240071952
    Abstract: A method includes depositing solder paste over first contact pads of a first package component. Spring connectors of a second package component are aligned to the solder paste. The solder paste is reflowed to electrically and physically couple the spring connectors of the second package component to the first contact pads of the first package component. A device includes a first package component and a second package component electrically and physically coupled to the first package component by way of a plurality of spring coils. Each of the plurality of spring coils extends from the first package component to the second package component.
    Type: Application
    Filed: January 10, 2023
    Publication date: February 29, 2024
    Inventors: Chih-Chiang Tsao, Hsuan-Ting Kuo, Chao-Wei Chiu, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20240071954
    Abstract: A memory device including a base semiconductor die, conductive terminals, memory dies, an insulating encapsulation and a buffer cap is provided. The conductive terminals are disposed on a first surface of the base semiconductor die. The memory dies are stacked over a second surface of the base semiconductor die, and the second surface of the base semiconductor die is opposite to the first surface of the base semiconductor die. The insulating encapsulation is disposed on the second surface of the base semiconductor die and laterally encapsulates the memory dies. The buffer cap covers the first surface of the base semiconductor die, sidewalls of the base semiconductor die and sidewalls of the insulating encapsulation. A package structure including the above-mentioned memory device is also provided.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ming Chiang, Chao-wei Li, Wei-Lun Tsai, Chia-Min Lin, Yi-Da Tsai, Sheng-Feng Weng, Yu-Hao Chen, Sheng-Hsiang Chiu, Chih-Wei Lin, Ching-Hua Hsieh
  • Publication number: 20240071953
    Abstract: A memory device including a base semiconductor die, conductive terminals, memory dies, an insulating encapsulation and a buffer cap is provided. The conductive terminals are disposed on a first surface of the base semiconductor die. The memory dies are stacked over a second surface of the base semiconductor die, and the second surface of the base semiconductor die is opposite to the first surface of the base semiconductor die. The insulating encapsulation is disposed on the second surface of the base semiconductor die and laterally encapsulates the memory dies. The buffer cap covers the first surface of the base semiconductor die, sidewalls of the base semiconductor die and sidewalls of the insulating encapsulation. A package structure including the above- mentioned memory device is also provided.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ming Chiang, Chao-wei Li, Wei-Lun Tsai, Chia-Min Lin, Yi-Da Tsai, Sheng-Feng Weng, Yu-Hao Chen, Sheng-Hsiang Chiu, Chih-Wei Lin, Ching-Hua Hsieh
  • Publication number: 20230369480
    Abstract: A semiconductor device comprises an insulating region surrounding an active area having a channel direction and a transverse direction that is transverse to the channel direction. A source region and a drain region are disposed in the active area, and are spaced apart along the channel direction. A channel is disposed in the active area and is interposed between the source region and the drain region. The channel comprises a two-dimensional electron gas (2DEG). A gate line is oriented along the transverse direction and is disposed on the channel and has a gate width in the channel direction. The gate line comprises gate material. A gate line terminus is disposed at each end of the gate line. Each gate line terminus comprises the gate material. Each gate line terminus has a width in the channel direction that is at least 1.2 time the gate width.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 16, 2023
    Inventors: Tzu-Wen Shih, Der-Ming Kuo, Ching-Hua Chiu, Meng-Shao Hsieh, Shih-Hsiang Tai
  • Publication number: 20160247973
    Abstract: A Light-Emitting Diode (LED) includes a light-emitting structure having a passivation layer disposed on vertical sidewalls across a first doped layer, an active layer, and a second doped layer that completely covers at least the sidewalls of the active layer. The passivation layer is formed by plasma bombardment or ion implantation of the light-emitting structure. It protects the sidewalls during subsequent processing steps and prevents current leakage around the active layer.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Hung-Wen HUANG, Hsing-Kuo HSIA, Ching-Hua CHIU
  • Patent number: 9324624
    Abstract: The present disclosure involves a method of fabricating a light-emitting diode (LED) wafer. The method first determines a target surface morphology for the LED wafer. The target surface morphology yields a maximum light output for LEDs on the LED wafer. The LED wafer is etched to form a roughened wafer surface. Thereafter, using a laser scanning microscope, the method investigates an actual surface morphology of the LED wafer. Afterwards, if the actual surface morphology differs from the target surface morphology beyond an acceptable limit, the method repeats the etching step one or more times. The etching is repeated by adjusting one or more etching parameters.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 26, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Chyi-Shyuan Chern, Hsin-Hsien Wu, Yung-Hsin Yang, Ching-Hua Chiu
  • Publication number: 20160035933
    Abstract: A LED die and method for bonding, dicing, and forming the LED die are disclosed. In an example, the method includes forming a LED wafer, wherein the LED wafer includes a substrate and a plurality of epitaxial layers disposed over the substrate, wherein the plurality of epitaxial layers are configured to form a LED; bonding the LED wafer to a base-board to form a LED pair; and after bonding, dicing the LED pair, wherein the dicing includes simultaneously dicing the LED wafer and the base-board, thereby forming LED dies.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Inventors: Yea-Chen LEE, Jung-Tang CHU, Ching-Hua CHIU, Hung-Wen HUANG
  • Patent number: 9117968
    Abstract: A light-emitting diode structure includes an AuSn or AuIn-containing bonding layer over a substrate, a metal layer disposed over the bonding layer, a p-type doped gallium nitride (p-GaN) layer disposed over the metal layer, a n-type doped gallium nitride (n-GaN) layer approximate the p-GaN layer, a multiple quantum well structure disposed between the n-GaN and p-GaN layers, and a conductive contact disposed on the n-GaN layer. The n-GaN layer includes a rough surface with randomly distributed dips. The nano-sized dips have diameters distributed between about 100 nm and about 600 nm, have a dip density ranging from about 107 grains/cm2 to about 109 grains/cm2, and are spaced from each other with an average spacing S, average diameter D, and a ratio S/D that ranges between about 1.1 and about 1.5. The conductive contact is disposed on some of the nano-sized dips of the rough surface.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Hsing-Kuo Hsia, Ching-Hua Chiu
  • Patent number: 9099632
    Abstract: A package structure includes: a substrate having a first side and a second side opposite to the first side; a metal layer disposed over at least a portion of the second side of the substrate; a light-reflective layer disposed over the first side of the substrate; and a photonic device bonded to the light-reflective layer from the first side. A segment of the metal layer extends through the substrate from the first side to the second side, and a portion of the substrate is completely enclosed in a cross-sectional view by the metal layer. The package structure is free of a bonding wire over the second side of the substrate.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 4, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chyi Shyuan Chern, Wen-Chien Fu, Hsing-Kuo Hsia, Chih-Kuang Yu, Ching-Hua Chiu, Hung-Yi Kuo
  • Publication number: 20150194567
    Abstract: The present disclosure provides one embodiment of a method for fabricating light-emitting diode (LED) devices. The method includes forming a nano-mask layer on a first substrate, wherein the nano-mask layer has a randomly arranged grain pattern; growing a first epitaxy semiconductor layer in the first substrate, forming a nano-composite layer; growing a number of epitaxy semiconductor layers over the nano-composite layer; bonding a second substrate to the epitaxy semiconductor layers from a first side of the epitaxy semiconductor layers; applying a radiation energy to the nano-composite layer; and separating the first substrate from the epitaxy semiconductor layers from a second side of the epitaxy semiconductor layers.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 9, 2015
    Inventors: Hsing-Kuo Hsia, Ching-Hua Chiu
  • Patent number: 9065015
    Abstract: A device includes a substrate; a group III-V semiconductor layer disposed over the substrate; and a seed layer disposed over the group III-V semiconductor layer. The substrate is a printed circuit board. The group III-V semiconductor layer includes a multiple quantum well (MQW) layer, a p-type doped layer, and an n-type doped layer. The seed layer includes a plurality of miniature elements. The miniature elements each contain a single-crystal material suitable for epitaxially growing the group III-V semiconductor layer. The miniature elements collectively cover less than 100% of a surface of the group III-V semiconductor layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 23, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Jung-Tang Chu, Ching-Hua Chiu, Hung-Wen Huang, Yea-Chen Lee, Hsing-Kuo Hsia
  • Publication number: 20150108424
    Abstract: A Light-Emitting Diode (LED) is formed on a sapphire substrate that is removed from the LED by grinding and then etching the sapphire substrate. The sapphire substrate is ground first to a first specified thickness using a single abrasive or multiple abrasives. The remaining sapphire substrate is removed by dry etching or wet etching.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Hung-Wen Huang, Hsing-Kuo Hsia, Ching-Hua Chiu
  • Publication number: 20140084238
    Abstract: A nano-patterned substrate includes a substrate and a plurality of nano-structures. The substrate has an upper surface and each of the plurality of nano-structures comprises a semiconductor buffer region and a buffer region formed on the upper surface of the substrate, wherein one of the pluralities of nano-structures has a ratio of height to diameter greater than 1, and an arc-shaped top surface.
    Type: Application
    Filed: December 1, 2013
    Publication date: March 27, 2014
    Applicants: SINO-AMERICAN SILICON PRODUCTS. LNC., EPISTAR CORPORATION
    Inventors: Zhen-Yu Li, Ching-Hua Chiu, Hao-Chung Kuo, Tien-Chang Lu
  • Publication number: 20140021483
    Abstract: A seed layer for growing a group 111-V semiconductor structure 1s embedded in a dielectric material on a carrier substrate. After the group 111-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group 111-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Jung-Tang Chu, Ching-Hua Chiu, Hung-Wen Huang, Yea-Chen Lee, Hsing-Kuo Hsia
  • Patent number: 8618564
    Abstract: The present disclosure relates to high efficiency light emitting diode devices and methods for fabricating the same. In accordance with one or more embodiments, a light emitting diode device includes a substrate having one or more recessed features formed on a surface thereof and one or more omni-directional reflectors formed to overlie the one or more recessed features. A light emitting diode layer is formed on the surface of the substrate to overlie the omni-directional reflector. The one or more omni-directional reflectors are adapted to efficiently reflect light.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: December 31, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Jung-Tang Chu, Hsing-Kuo Hsia, Ching-Hua Chiu
  • Patent number: 8592242
    Abstract: The present disclosure relates to methods for fabricating LEDs by patterning and etching an n-doped epitaxial layer to form regions of roughened surface of the n-doped layer and mesa structures adjacent to the roughened surface regions before depositing an active layer and the rest of the epitaxial layers on the mesa structures. The method includes growing epitaxial layers of an LED including an un-doped layer and an n-doped layer on a wafer of growth substrate. The method also includes patterning the n-doped layer to form a first region of the n-doped layer and a mesa region of the n-doped layer adjacent to the first region. The method further includes etching the first region of the n-doped layer to create a roughened surface. The method further includes growing additional epitaxial layers of the LED including an active layer and a p-doped layer on the mesa region of the n-doped layer.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 26, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Hung-Wen Huang, Hsing-Kuo Hsia, Ching-Hua Chiu
  • Patent number: 8563334
    Abstract: A Light-Emitting Diode (LED) is formed on a sapphire substrate that is removed from the LED by grinding and then etching the sapphire substrate. The sapphire substrate is ground first to a first specified thickness using a single abrasive or multiple abrasives. The remaining sapphire substrate is removed by dry etching or wet etching.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 22, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Hung-Wen Huang, Hsing-Kuo Hsia, Ching-Hua Chiu