Patents by Inventor Ching-Shan Lin

Ching-Shan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220025547
    Abstract: A manufacturing method of a silicon carbide wafer includes the following. A raw material containing carbon and silicon and a seed located above the raw material are provided in a reactor. A nitrogen content in the reactor is reduced, which includes the following. An argon gas is passed into the reactor, where a flow rate of passing the argon gas into the reactor is 1,000 sccm to 5,000 sccm, and a time of passing the argon gas into the reactor is 2 hours to 48 hours. The reactor and the raw material are heated to form a silicon carbide material on the seed. The reactor and the raw material are cooled to obtain a silicon carbide ingot. The silicon carbide ingot is cut to obtain a plurality of silicon carbide wafers. A semiconductor structure is also provided.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Publication number: 20220025542
    Abstract: The disclosure provides a silicon carbide seed crystal and a method of manufacturing a silicon carbide ingot. The silicon carbide seed crystal has a silicon surface and a carbon surface opposite to the silicon surface. A difference D between a basal plane dislocation density BPD1 of the silicon surface and a basal plane dislocation density BPD2 of the carbon surface satisfies the following formula (1), a local thickness variation (LTV) of the silicon carbide seed crystal is 2.5 ?m or less, and a stacking fault (SF) density of the silicon carbide seed crystal is 10 EA/cm2 or less: D=(BPD1?BPD2)/BPD1?25%??(1).
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Publication number: 20220024073
    Abstract: A crystal ingot cutting device and a crystal ingot cutting method are provided. The crystal ingot cutting device includes a driving unit, at least one cutting wire and a plurality of abrasive particles. The cutting wire is connected to the driving unit, wherein the driving unit drives a crystal ingot to move to the cutting wire and drives the cutting wire to reciprocate. A moving speed of the crystal ingot is 10˜700 ?m/min, and a reciprocating speed of the cutting wire is 1800˜5000 m/min. The plurality of abrasive particles are arranged on the cutting wire, and a particle size of each abrasive particle is 5˜50 ?m.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Publication number: 20220025548
    Abstract: A silicon carbide ingot is provided, which includes a seed end, and a dome end opposite to the seed end. In the silicon carbide ingot, a ratio of the vanadium concentration to the nitrogen concentration at the seed end is in a range of 5:1 to 11:1, and a ratio of the vanadium concentration to the nitrogen concentration at the dome end is in a range of 2:1 to 11:1.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Publication number: 20220025543
    Abstract: A silicon carbide seed crystal and method of manufacturing the same, and method of manufacturing silicon carbide ingot are provided. The silicon carbide seed crystal has a silicon surface and a carbon surface opposite to the silicon surface. A difference D between a basal plane dislocation density BPD1 of the silicon surface BPD1 and a basal plane dislocation density BPD2 of the carbon surface satisfies the following formula (1): D=(BPD1?BPD2)/BPD1?25%??(1).
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Publication number: 20220024773
    Abstract: A method of fabricating a silicon carbide material is provided. The method includes the following steps. A first annealing process is performed on a wafer or on an ingot that forms the wafer after wafer slicing. The conditions of the first annealing process include: a heating rate of 10° C./minute to 30° C./minute, an annealing temperature of 2000° C. or less, and a constant temperature annealing time of 2 minutes or more and 4 hours or less for performing the first annealing process. After performing the first annealing process, an average resistivity of the wafer or the ingot is greater than 1010 ?·cm.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventor: Ching-Shan Lin
  • Patent number: 11041255
    Abstract: A silicon carbide crystal and a manufacturing method thereof are provided. The silicon carbide crystal includes an N-type seed layer, a barrier layer, and a semi-insulating ingot, which are sequentially stacked and are made of silicon carbide. The N-type seed layer has a resistivity within a range of 0.01-0.03 ?·cm. The barrier layer includes a plurality of epitaxial layers sequentially formed on the N-type seed layer by an epitaxial process. The C/Si ratios of the epitaxial layers gradually increase in a growth direction away from the N-type seed layer. A nitrogen concentration of the silicon carbide crystal gradually decreases from the N-type seed layer toward the semi-insulating ingot by a diffusion phenomenon, so that the semi-insulating crystal has a resistivity larger than 107 ?·cm.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: June 22, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Ching-Shan Lin, Jian-Hsin Lu, Chien-Cheng Liou, I-Ching Li
  • Patent number: 10990131
    Abstract: A manufacturing method of touch sensors is provided. A flexible touch sensing component can be formed on a first substrate by a release layer. Next, the flexible touch sensing component is transferred to a second substrate after a releasing step. Furthermore, by the support of the second substrate, the flexible touch sensing component can be processed and then adhered a desired cover. After releasing the second substrate from the flexible touch sensing component, the touch sensor is formed.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 27, 2021
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Ching-Shan Lin, Chun-Yan Wu, Chung-Chin Hsiao, Hwai-Hai Chiang
  • Publication number: 20210054525
    Abstract: A silicon carbide crystal includes a seed layer, a bulk layer and a stress buffering structure formed between the seed layer and the bulk layer. The seed layer, the bulk layer and the stress buffering structure are each formed with a dopant that cycles between high and low dopant concentration. The stress buffering structure includes a plurality of stacked buffer layers and a transition layer over the buffer layers. The buffer layer closest to the seed layer has the same variation trend of the dopant concentration as the buffer layer closest to the transition layer, and the dopant concentration of the transition layer is equal to the dopant concentration of the seed layer.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 25, 2021
    Inventors: CHING-SHAN LIN, JIAN-HSIN LU, CHIEN-CHENG LIOU, MAN-HSUAN LIN
  • Patent number: 10851470
    Abstract: A silicon carbide crystal and a method for manufacturing the same are disclosed. The silicon carbide crystal includes a seed layer, a bulk layer, and a stress buffering structure formed between the seed layer and the bulk layer. The seed layer, the bulk layer, and the stress buffering structure are each formed with a dopant that cycles between high and low concentration. Therefore, the crystal defects can be significantly reduced.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: December 1, 2020
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Ching-Shan Lin, Jian-Hsin Lu, Chien-Cheng Liou, Man-Hsuan Lin
  • Patent number: 10698516
    Abstract: A flexible touch-sensing component is formed on a release film by support provided from a first carrier substrate and a second carrier substrate. Then, the flexible touch-sensing component can be attached onto non-planar and curved cover plates through the reloading of a third carrier substrate, so that the touch panel can be lighter and thinner, and have a lower processing cost. In addition, the flexible touch-sensing component uses a film sensor that includes a metal nanowire conductive layer. Since the silver nanowire has flexibility, the touch sensor and the touch panel in the present disclosure can be used in flexible touch-sensing devices and curved-surface touch-sensing devices. Furthermore, based on application of an adhesive reactive ink, the released touch panel can be directly attached to target carrier substrate without adding an auxiliary layer of optical glue or hydrogel glue.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 30, 2020
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Ching-Shan Lin, Chun-Yan Wu, Chung-Chin Hsiao, Hwai-Hai Chiang
  • Publication number: 20200190693
    Abstract: A silicon carbide crystal and a manufacturing method thereof are provided. The silicon carbide crystal includes an N-type seed layer, a barrier layer, and a semi-insulating ingot, which are sequentially stacked and are made of silicon carbide. The N-type seed layer has a resistivity within a range of 0.01-0.03 ?·cm. The barrier layer includes a plurality of epitaxial layers sequentially formed on the N-type seed layer by an epitaxial process. The C/Si ratios of the epitaxial layers gradually increase in a growth direction away from the N-type seed layer. A nitrogen concentration of the silicon carbide crystal gradually decreases from the N-type seed layer toward the semi-insulating ingot by a diffusion phenomenon, so that the semi-insulating crystal has a resistivity larger than 107 ?·cm.
    Type: Application
    Filed: June 24, 2019
    Publication date: June 18, 2020
    Inventors: CHING-SHAN LIN, JIAN-HSIN LU, CHIEN-CHENG LIOU, I-CHING LI
  • Patent number: 10459590
    Abstract: A touch panel is formed by firstly forming a film layer on a first plate, and next, sequentially forming a buffer layer on the film layer, forming a sensing layer on the buffer layer, forming a second plate on the sensing layer. After the foregoing formation procedures, the first plate is removed from the film layer. Next, a cover is attached to the film layer. In this way, the film layer is located between the cover and the buffer layer. Finally, the second plate is removed from the sensing layer, so as to form a touch panel with the features of light weight, thin thickness and low costs.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: October 29, 2019
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Ching-Shan Lin, Chunyan Wu, Lianjie Ji, Fang Fang
  • Patent number: 10347481
    Abstract: A method for producing a silicon carbide wafer includes: providing a silicon carbide wafer having an unpolished surface; in which the unpolished surface has a first crystal face and a second crystal face; polishing one face of the first crystal face and the second crystal face of the unpolished surface in a first polishing solution by using a polisher; in which the polisher includes a polishing pad and a plurality of abrasive particles fixed on the polishing pad; and polishing the other face of the first crystal face and the second crystal face of the unpolished surface in a second polishing solution by using the polisher; in which a pH value of the first polishing solution is less than or equal to 7, and a pH value of the second polishing solution is greater than or equal to 7. The present disclosure also provides a silicon carbide wafer.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 9, 2019
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Ching-Shan Lin, Jian-Hsin Lu, Chien-Cheng Liou, I-Ching Li
  • Publication number: 20190196633
    Abstract: A flexible touch-sensing component is formed on a release film by support provided from a first carrier substrate and a second carrier substrate. Then, the flexible touch-sensing component can be attached onto non-planar and curved cover plates through the reloading of a third carrier substrate, so that the touch panel can be lighter and thinner, and have a lower processing cost. In addition, the flexible touch-sensing component uses a film sensor that includes a metal nanowire conductive layer. Since the silver nanowire has flexibility, the touch sensor and the touch panel in the present disclosure can be used in flexible touch-sensing devices and curved-surface touch-sensing devices. Furthermore, based on application of an adhesive reactive ink, the released touch panel can be directly attached to target carrier substrate without adding an auxiliary layer of optical glue or hydrogel glue.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Inventors: Ching-Shan Lin, Chun-Yan Wu, Chung-Chin Hsiao, Hwai-Hai Chiang
  • Publication number: 20190196549
    Abstract: A manufacturing method of touch sensors is provided. A flexible touch sensing component can be formed on a first substrate by a release layer. Next, the flexible touch sensing component is transferred to a second substrate after a releasing step. Furthermore, by the support of the second substrate, the flexible touch sensing component can be processed and then adhered a desired cover. After releasing the second substrate from the flexible touch sensing component, the touch sensor is formed.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Inventors: Ching-Shan Lin, Chun-Yan Wu, Chung-Chin Hsiao, Hwai-Hai Chiang
  • Patent number: 10331283
    Abstract: The present invention discloses a capacitive touch panel, comprises a substantially transparent substrate and a transparent sensing pattern. The transparent sensing pattern, which detects touch signals, is formed on the substantially transparent substrate. The transparent sensing pattern comprises a plurality of conductor cells and at least one metal conductor disposed on the substantially transparent substrate. The at least one metal conductor connects two adjacent conductor cells. At least one low-reflection layer is formed on the at least one metal conductor. The low-reflection layer can reduce the reflected light therefore reducing the visibility of the metal conductors.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 25, 2019
    Assignee: TPK Touch Solutions (Xiamen) Inc.
    Inventors: Yuh-Wen Lee, Ching-Shan Lin
  • Publication number: 20190115205
    Abstract: A method for producing a silicon carbide wafer includes: providing a silicon carbide wafer having an unpolished surface; in which the unpolished surface has a first crystal face and a second crystal face; polishing one face of the first crystal face and the second crystal face of the unpolished surface in a first polishing solution by using a polisher; in which the polisher includes a polishing pad and a plurality of abrasive particles fixed on the polishing pad; and polishing the other face of the first crystal face and the second crystal face of the unpolished surface in a second polishing solution by using the polisher; in which a pH value of the first polishing solution is less than or equal to 7, and a pH value of the second polishing solution is greater than or equal to 7. The present disclosure also provides a silicon carbide wafer.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 18, 2019
    Inventors: CHING-SHAN LIN, JIAN-HSIN LU, CHIEN-CHENG LIOU, I-CHING LI
  • Publication number: 20190106811
    Abstract: A silicon carbide crystal and a manufacturing method for same are provided. A silicon carbide crystal seed used for the silicon carbide crystal has a crystal-growing surface with a surface roughness (Ra) less than 2.0 nm, and a thickness of the silicon carbide crystal seed is less than 700 ?m. Therefore, the silicon carbide crystal grown from the silicon carbide crystal seed by sublimation method (which is also a PVT method) may have low basal plane dislocation (BPD) and low micropipe density (MPD).
    Type: Application
    Filed: January 8, 2018
    Publication date: April 11, 2019
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Ching-Shan Lin, Jian-Hsin Lu, Chien-Cheng Liou, I-Ching Li
  • Publication number: 20190106807
    Abstract: A silicon carbide crystal and a method for manufacturing the same are disclosed. The silicon carbide crystal includes a seed layer, a bulk layer, and a stress buffering structure formed between the seed layer and the bulk layer. The seed layer, the bulk layer, and the stress buffering structure are each formed with a dopant that cycles between high and low concentration. Therefore, the crystal defects can be significantly reduced.
    Type: Application
    Filed: March 30, 2018
    Publication date: April 11, 2019
    Inventors: CHING-SHAN LIN, JIAN-HSIN LU, CHIEN-CHENG LIOU, MAN-HSUAN LIN