Patents by Inventor Chris Togami

Chris Togami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060252311
    Abstract: An EMI shielding mechanism for use with an electronic module, such as an opto-electronic transceiver module, is disclosed. The EMI shielding mechanism includes a plurality of shielding tabs disposed on an outside face of the module. When the module is fully disposed in a port of a host device, the shielding tabs contact an edge of the port, thus reducing the amount of EMI radiation emitted form that edge. The shielding tabs are angled so that when the module is fully disposed in the port, a portion of the shielding tabs is inside the port and a portion is outside of the port. The angled shielding tabs provide a spring force which assists a user to extract the module from the port.
    Type: Application
    Filed: April 17, 2006
    Publication date: November 9, 2006
    Inventors: Chris Togami, Gary Sasser, Andreas Weber
  • Publication number: 20060153507
    Abstract: The present invention relates to modular optical devices compatible with legacy form factors, for example, SFF, SFP, and XFP form factors. A housing contains optical components including a lens block, a fabricated package, at least one lens pin, and a substrate. The lens block is configured to receive one or more lens pins. The fabricated package is mechanically coupled to the lens block and includes a light source and/or a light detector and a connector for coupling the fabricated package to the substrate. The at least one lens pin is mechanically coupled to the lens block for directing optical signals between the light source and/or light detector and external components. The substrate is mechanically coupled to the fabricated package and the housing and electrically connected to the light source and/or light detector such that substrate circuitry can electrically interoperate with the light source and/or light detector.
    Type: Application
    Filed: May 20, 2005
    Publication date: July 13, 2006
    Inventors: Chris Togami, Gary Sasser
  • Patent number: 7066765
    Abstract: An EMI shielding mechanism for use with an electronic module, such as an opto-electronic transceiver module, is disclosed. The EMI shielding mechanism includes a plurality of shielding tabs disposed on an outside face of the module. When the module is fully disposed in a port of a host device, the shielding tabs contact an edge of the port, thus reducing the amount of EMI radiation emitted form that edge. The shielding tabs are angled so that when the module is fully disposed in the port, a portion of the shielding tabs is inside the port and a portion is outside of the port. The angled shielding tabs provide a spring force which assists a user to extract the module from the port.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 27, 2006
    Assignee: Finisar Corporation
    Inventors: Chris Togami, Gary Sasser, Andreas Weber
  • Patent number: 7066746
    Abstract: An integrated latching mechanism for use with a user pluggable electronic module, such as an opto-electronic transceiver module, is disclosed. The latching mechanism allows the user to selectively latch the module within a corresponding host port by manipulation of a lever formed on a bail. Movement of the bail causes a locking pin to extend and latch the module within the port. Conversely, movement of the bail can be used to disengage the locking pin and thereby allow the user to extract the module from within the port. Operative movement of the lock pin is accomplished by forming a cam on the bail lever. Movement of the bail lever thus causes movement of the cam, which corresponds to movement of a locking pin from a latched to a delatched position. The bail may be substantially disposed either within or outside of the electronic module.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: June 27, 2006
    Assignee: Finisar Corporation
    Inventors: Chris Togami, Guy Newhouse
  • Publication number: 20050285236
    Abstract: Embodiments of the present invention are directed to dual stage modular optical devices with insert digital diagnostics components. A first portion of a leadframe couples a first fabricated package including a light source and/or light detector to a second fabricated package with first opening for receiving inserts. A second portion of the leadframe couples the second fabricated package to a third fabricated package with a second opening for receiving inserts. A first component insert is coupled to the second fabricated package such that components of the first component insert can electrically interoperate with the light source and/or light detector. A second component insert is coupled to the third fabricated package such that components of the second component insert can electrically interoperate with components of the first component insert to implement digital diagnostics functions.
    Type: Application
    Filed: June 13, 2005
    Publication date: December 29, 2005
    Inventors: Gary Sasser, Chris Togami
  • Publication number: 20050286906
    Abstract: Embodiments of the present invention are directed to high density arrays of optical transceiver modules. A first fabricated package includes a light source and/or light detector, a first surface with at least one opening for transferring optical signals, and a second opposing surface. A second fabricated package has an opening for accepting a component insert and is oriented such that the length of the second fabricated package is essentially perpendicular to the second opposing surface. A lead frame mechanically connects the first fabricated package and the second fabricated package and electrically connects the light source and/or light detector in the first fabricated package to contacts exposed in the opening of the second fabricated package. A component insert is mechanically coupled to the second fabricated package and electrically coupled to the exposed contacts such that components of the component insert can electrically interoperate with the light source and/or light detector.
    Type: Application
    Filed: June 2, 2005
    Publication date: December 29, 2005
    Inventors: Chris Togami, Paul Rosenberg, Gary Sasser
  • Publication number: 20050286901
    Abstract: Embodiments of the present invention are directed to modular optical devices compatible with multiple fiber connectors. A lens block is configured such that one or more lens pins can mechanically couple to the lens block and such that the lens block can mechanically couple to a fabricated package that includes light transmitting and/or detecting components. At least one lens pin has a fiber stop configured to accept a fiber end prepared for use with a first type of fiber connector. A fiber stop disk alters the configuration of the lens pin such that the lens pin can compatibly accept a fiber end prepared for use with a second different type of fiber connector not withstanding that the fiber stop is configured to accept a fiber end prepared for use with the first type of fiber connector.
    Type: Application
    Filed: June 6, 2005
    Publication date: December 29, 2005
    Inventors: Gary Sasser, Chris Togami, Peter Campbell
  • Publication number: 20050281515
    Abstract: The principles of the present invention relate to aligning optical components with three degrees of translational freedom. A lens pin, a lens base, and a molded package are aligned in a first direction, a second direction, and a third direction such that the signal strength of optical signals transferred between a lens included in the lens pin and the molded package is optimized. The lens pin is mechanically coupled to the lens base to fix the position of the lens relative to the molded package in the first direction. Subsequently, the lens base and the molded package are realigned in the second and third directions such that the signal strength is again optimized. The lens base is mechanically coupled to the molded package to fix the position of the lens base relative to the molded package in the second and third directions.
    Type: Application
    Filed: May 10, 2005
    Publication date: December 22, 2005
    Inventors: Chris Togami, Gary Sasser, Rudolf Hofmeister, Paul Rosenberg, Frank Levinson, Axel Mehnert
  • Publication number: 20050271391
    Abstract: Embodiments of the present invention are directed to a dual stage modular optical device for sending and/or receiving optical signals. A first fabricated package includes a light source for generating optical signals and/or a light detector for detecting received optical signals. A second fabricated package includes an opening for accepting circuitry that is to electrically interoperate with the light source and/or light detector to transfer optical signals. A lead frame mechanically connects the first fabricated package to the second fabricated package and electrically connects the light source and/or light detector to contacts exposed in the opening. The dual stage modular optical device can be coupled to a substrate configured to be received within a standard slot of a host system, such as a PCI or PCMCIA slot. Thus, one or more optical connections are integrated within the host device or system.
    Type: Application
    Filed: May 20, 2005
    Publication date: December 8, 2005
    Inventors: Chris Togami, Gary Sasser
  • Publication number: 20050265670
    Abstract: Embodiments of the present invention are directed to a modular optical device with a component insert for sending and/or receiving optical signals. A first fabricated package includes a light source for generating optical signals and/or a light detector for detecting received optical signals. A second fabricated package includes an opening for accepting circuitry. A lead frame mechanically connects the first fabricated package to the second fabricated package and electrically connects the light source and/or the light detector in the first fabricated package to contacts exposed in the opening of the second fabricated package. A component insert is mechanically coupled to the second fabricated package and electrically coupled to the exposed contacts for electrical interoperation with the light source and/or the light detector to transfer optical signals. The modular optical device can be coupled to a substrate configured to be received within a standard host system slot.
    Type: Application
    Filed: May 23, 2005
    Publication date: December 1, 2005
    Inventors: Gary Sasser, Chris Togami, David Allouche
  • Publication number: 20050244110
    Abstract: Embodiments of the present invention are directed to a modular optical device for sending and/or receiving optical signals. A lens block is configured to mechanically couple to one or more lens pins and to a molded package. A molded package, including at least one of a light source and a light detector and including a connection portion manufactured for direct mechanical and electrical coupling of the molded package to a substrate, is mechanically coupled to the lens block. At least one lens pin for directing an optical signal between a light source or light detector and corresponding external components is coupled to the lens block. The modular optical device can be coupled to a substrate configured to be received within a standard slot of a host system, such as a PCI or PCMCIA slot. Thus, one or more optical connections are integrated within the host device or system.
    Type: Application
    Filed: April 27, 2005
    Publication date: November 3, 2005
    Inventors: Chris Togami, Gary Sasser
  • Patent number: 6955482
    Abstract: An optical transceiver module for use in optical communications networks is disclosed. The transceiver features a simplified optical subassembly structure that facilitates the alignment and calibration of active optical components located thereon. The transceiver includes a shell that contains a transceiver printed circuit board and a transmitter/receiver optical subassembly (“TROSA”) connected to the printed circuit board via a TROSA connector. The TROSA includes a singular substrate on which a laser for producing optical signals and a photodetector for receiving optical signals are disposed. The laser and photodetector are precisely positioned on the TROSA substrate to have a specified spacing therebetween. So positioned, the laser and photodetector can be aligned with conduits of a sleeve assembly in a single alignment operation, thereby simplifying calibration of the transceiver module.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 18, 2005
    Assignee: Finisar Corporation
    Inventors: Paul K. Rosenberg, Gary Sasser, Chris Togami, Donald A. Ice
  • Publication number: 20050226570
    Abstract: A transceiver and assembly process is provided to passively align a lens within a transmitting sleeve of a duplex port assembly with a light emitting component within an insert molded package during the assembly of the transceiver. The transceiver design and manufacturing process allow for pivoting of the receiving sleeve around a substantially common access such that a light detecting component may be actively aligned with a lens included in a receiving sleeve of the duplex port assembly.
    Type: Application
    Filed: December 30, 2004
    Publication date: October 13, 2005
    Inventors: Chris Togami, Rudolf Hofmeister, Mina Farr
  • Patent number: 6953289
    Abstract: This disclosure is generally concerned with optical modules. In one example, an optical module provided that includes a pair of optical subassemblies, each of which includes a port housing within which a corresponding optical component is disposed. The optical module further includes a pair of electrically conductive elements configured to facilitate control of EMI. Each of the electrically conductive elements is disposed on a respective port housing such that a gap is present between the first and second electrically conductive elements and the first and second electrically conductive elements do not contact each other.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: October 11, 2005
    Assignee: Finisar Corporation
    Inventors: Chris Togami, Gary Sasser, Kai Ng
  • Publication number: 20050168963
    Abstract: An optical transceiver module that includes an enclosure within which are disposed a transmitter module and a receiver module. A primary and secondary board are disposed as well in the enclosure, and the transmitter module and the receiver module are each connected with one of the boards. The primary and secondary boards each have a ground plane, and a third ground plane is provided by a ground signal plate that disposed within the enclosure and electrically coupled with the primary board and the secondary board.
    Type: Application
    Filed: March 30, 2005
    Publication date: August 4, 2005
    Inventors: Chris Togami, Stephan Burdick, Stephen Gordy
  • Publication number: 20050170695
    Abstract: An EMI shielding mechanism for use with an electronic module, such as an opto-electronic transceiver module, is disclosed. The EMI shielding mechanism includes a plurality of shielding tabs disposed on an outside face of the module. When the module is fully disposed in a port of a host device, the shielding tabs contact an edge of the port, thus reducing the amount of EMI radiation emitted form that edge. The shielding tabs are angled so that when the module is fully disposed in the port, a portion of the shielding tabs is inside the port and a portion is outside of the port. The angled shielding tabs provide a spring force which assists a user to extract the module from the port.
    Type: Application
    Filed: January 30, 2004
    Publication date: August 4, 2005
    Inventors: Chris Togami, Gary Sasser, Andreas Weber
  • Publication number: 20050152701
    Abstract: A shield device for preventing the emission of electromagnetic interference (“EMI”) from an optoelectronic device, such as an optical transceiver, is disclosed. In particular, an EMI shield is disclosed for placement within an optical transceiver module in order to intercept and absorb EMI produced by electronic components included within the transceiver. This absorption by the EMI shield prevents EMI from escaping the optical transceiver module and interfering with other electronic components that are typically placed in close proximity to the transceiver. The EMI shield in one embodiment includes a sheet of EMI absorbing material that is sized for placement within the transceiver. The EMI shield can be interposed between an outer shell of the transceiver and electronic components located on a printed circuit board that is disposed within the transceiver. The proximity of the EMI shield to the EMI-producing electronic components maximizes EMI absorption by the shield.
    Type: Application
    Filed: January 5, 2005
    Publication date: July 14, 2005
    Inventors: Linda Liu, Tom Downey, John Moller, Chris Togami
  • Publication number: 20050036747
    Abstract: This disclosure is generally concerned with optical modules. In one example, an optical module provided that includes a pair of optical subassemblies, each of which includes a port housing within which a corresponding optical component is disposed. The optical module further includes a pair of electrically conductive elements configured to facilitate control of EMI. Each of the electrically conductive elements is disposed on a respective port housing such that a gap is present between the first and second electrically conductive elements and the first and second electrically conductive elements do not contact each other.
    Type: Application
    Filed: September 22, 2004
    Publication date: February 17, 2005
    Inventors: Chris Togami, Gary Sasser, Kai Ng
  • Publication number: 20050018177
    Abstract: Methods for assembly of optical transceivers. In one example, the method is performed in connection with an optical transceiver that includes a transmitter optical subassembly and a receiver optical subassembly, as well as structure that defines a pair of ports with which the transmitter optical subassembly and receiver optical subassembly, respectively, are to be aligned. This example of the method involves positioning the transmitter optical subassembly and the receiver optical subassembly in a desired position relative to each other. The transmitter optical subassembly and the receiver optical subassembly are then fixed in the desired position. Next, the transmitter optical subassembly is aligned with one of the ports, and the receiver optical subassembly is aligned with the other port. The alignment of both the transmitter optical subassembly and the receiver optical subassembly with their respective ports is performed in a single operation.
    Type: Application
    Filed: August 23, 2004
    Publication date: January 27, 2005
    Inventors: Paul Rosenberg, Gary Sasser, Chris Togami, Donald Ice
  • Publication number: 20040264887
    Abstract: An optical transceiver module for use in optical communications networks is disclosed. The transceiver features a simplified optical subassembly structure that facilitates the alignment and calibration of active optical components located thereon. The transceiver includes a shell that contains a transceiver printed circuit board and a transmitter/receiver optical subassembly (“TROSA”) connected to the printed circuit board via a TROSA connector. The TROSA includes a singular substrate on which a laser for producing optical signals and a photodetector for receiving optical signals are disposed. The laser and photodetector are precisely positioned on the TROSA substrate to have a specified spacing therebetween. So positioned, the laser and photodetector can be aligned with conduits of a sleeve assembly in a single alignment operation, thereby simplifying calibration of the transceiver module.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Inventors: Paul K. Rosenberg, Gary Sasser, Chris Togami, Donald A. Ice