Patents by Inventor Christoph Herrmann

Christoph Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170234996
    Abstract: A discriminator (118) includes a set of comparators (120, 2021, 2023, . . . , 202N), a window width generator (124, 214, 2141, . . . , 214N), and a set of reference signal generators (122, 2121, 2122, 2123, . . . , 212N). In response to the discriminator being in a window based spectrum measurement mode, a first reference signal generator for a first comparator generates a reference signal that is supplied to the first comparator and that is added with the window width with a result of the addition supplied to the second comparator. The first comparator compares a peak height of a pulse indicative of an energy of detected radiation with the supplied reference signal and produces a first output indicating which of the peak height or the reference signal is greater. The second comparator compares the peak height with the supplied result of the addition and produces a second output indicating which of the peak height or the result of the addition is greater.
    Type: Application
    Filed: August 24, 2015
    Publication date: August 17, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph HERRMANN
  • Publication number: 20170192110
    Abstract: The invention relates to a radiation detector (100?) and a method for detecting radiation, particularly for detecting X-rays (X) in a CT imaging apparatus (1000?). According to a preferred embodiment, the radiation detector (100?) comprises a conversion element (110) for converting incident radiation (X) into electrical signals which are read out and processed by a readout circuit (120). A heating device comprising the heat source (135?) of a Peltier element is provided with which the conversion element (110) can controllably be heated in order to reduce negative effects, e.g. of polarization, on image accuracy, wherein the heat sink (137?) of the Peltier element is oriented towards the readout circuit.
    Type: Application
    Filed: September 15, 2015
    Publication date: July 6, 2017
    Inventors: Roger STEADMAN BOOKER, Christoph HERRMANN, Frank VERBAKEL
  • Patent number: 9678220
    Abstract: The present invention relates to an x-ray detector comprising a sensor unit for detecting incident x-ray radiation comprising a number of sensor elements, a counting channel per sensor element for obtaining a count signal by counting photons or charge pulses generated in response to the incident x-ray radiation since a beginning of a measurement interval, an integrating channel per sensor element for obtaining an integration signal representing the total energy of radiation detected since the beginning of the measurement interval, and a processing unit for estimating, from the integration signals of the sensor elements, count signals of sensor elements whose counting channel has been saturated during the measurement interval.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: June 13, 2017
    Assignee: KONNINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Patent number: 9664558
    Abstract: The invention relates to radiation detection with a directly converting semiconductor layer for converting an incident radiation into electrical signals. Sub-band infra-red (IR) irradiation considerably reduces polarization in the directly converting semi-conductor material when irradiated, so that counting is possible at higher tube currents without any baseline shift. An IR irradiation device is integrated into the readout circuit to which the crystal is flip-chip bonded in order to enable 4-side-buttable crystals.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 30, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker
  • Patent number: 9615812
    Abstract: Calibration methods and related calibration controllers (CC) for calibrating imaging apparatuses (102) such as a 3D computed tomography imager or a 2D x-ray imager. The imaging apparatuses (102) are equipped with a dynamic beam shaper (RF). The dynamic beam shaper (RF) allows adapting the energy profile of a radiation beam (PR) used in the imaging apparatuses (102) to a shape of an object (PAT) to be imaged. A plurality of gain images are acquired in dependence on a shape of the object and the view along which the gain images are acquired or a target gain image is synthesized from a plurality of basis gain images (BGI).
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: April 11, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Bernd Menser
  • Patent number: 9608157
    Abstract: A radiation detector (10) includes a semiconductor element (1) for generating positive holes and electrons, a cathode (2) formed on a first surface of the semiconductor element (1) and a plurality of segmented anodes (3) formed on a second surface of the semiconductor element (1), the second surface being in opposed relation to the first surface. Additionally, a plurality of segmented steering electrodes (5a) are positioned adjacent the plurality of segmented anodes (3). Moreover, a plurality of doping atoms are located above at least a portion of the plurality of segmented anodes (3) for reducing the voltage difference between the plurality of segmented anodes (3) and the plurality of segmented steering electrodes (5a).
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: March 28, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaus Juergen Engel, Christoph Herrmann
  • Patent number: 9535171
    Abstract: The invention relates to a radiation detector (100) and an associated method for the detection of (e.g. X or ?-) radiation. The detector (100) comprises a converter element (110) in which incident photons (X) are converted into electrical signals, and an array of anodes (130) for generating an electrical field (E) in the converter element (110). At least two anodes are associated with two steering electrodes (140) to which different potentials can be applied by a control unit (150). Preferably, each single anode or small group of anodes is surrounded by one steering electrode. The potentials of the steering electrodes (140) may be set as a function of the potentials that are induced in these electrodes when an operating voltage is applied between the anodes and a cathode (120). Moreover, a grid electrode (160) may be provided that at least partially encircles anodes (130) and their steering electrodes (140).
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Klaus Jurgen Engel, Roger Steadman Booker
  • Patent number: 9535174
    Abstract: The present invention discloses a pixilated direct conversion photon counting detector with a direct conversion material layer and a pixilated electrode. Individual electrode pixels are segmented into three segments (510, 520, 530), wherein one of the segments (520) is operated at a more electrically repellant value than that of the other two (510, 530). Said other two segments are connected to electric circuitry (610, 611, 620, 630) that is arranged to generate signals which are indicative of a count of electrons or holes that approach each of the respective electrode pixel segments and to subtract the generated signals from each other.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaus Juergen Engel, Roger Steadman Booker, Christoph Herrmann
  • Publication number: 20160377745
    Abstract: The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). The detection device (6) is configured to detect the photons during a first time period. The detection device (6) comprises a sensor (10) having an intermediate direct conversion material for converting photons into electrons and holes, a shaping element (20), and a compensation unit (450, INT, 950). The compensation unit (450, INT, 950) is adapted to provide a compensation signal based on the electrical pulse and on a photoconductive gain of said sensor (10). The core of the invention is to provide circuits to reduce artifacts due to inherent errors with direct conversion detectors in spectral computed tomography by determining a compensation current, by detecting or monitoring a baseline restorer feedback signal, or by ignoring signals above the baseline level.
    Type: Application
    Filed: November 20, 2014
    Publication date: December 29, 2016
    Applicant: Koninklijke Philips N.V.
    Inventors: Heiner DAERR, Christoph HERRMANN, Frank BERGNER, Roger STEADMAN BOOKER
  • Publication number: 20160299002
    Abstract: The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2) and capable of adjusting ballistic deficit. The detection device (6) comprises a pre-amplifying unit (11) (such as, e.g., a charge-sensitive amplifier), a shaping unit (60) comprising a feedback discharge unit (13, I) (such as, e.g., a feedback resistor or a feedback current source), and a feedback discharge control unit (50) coupled to the feedback discharge unit (13, I). The feedback discharge control unit (50) is adapted to, e.g., adjust a resistance of a feedback resistor (and/or to adjust the current value of the feedback current source) if an electrical pulse generated by the shaping unit (60) does not exceed at least one energy comparison value (X1, X2, . . . , XN). The feedback discharge control unit (50) is adapted to not adjust the parameter of the feedback discharge unit (13, I) if the electrical pulse exceeds the at least one energy comparison value (X1, X2, . . . , XN).
    Type: Application
    Filed: November 7, 2014
    Publication date: October 13, 2016
    Inventors: Roger STEADMAN BOOKER, Christoph HERRMANN
  • Publication number: 20160285544
    Abstract: A wireless network with at least one base station and a plurality of associated terminals for the exchange of payload data and control data and at least one common transmission channel which is available for access to several terminals is described. The base station is configured to control access to the common transmission channel and the terminals are configured to send at least an access signal to the base station for the purpose of obtaining access to the common transmission channel. Different start moments and different preambles can be assigned to the terminals for transmitting their respective access signals.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventor: Christoph HERRMANN
  • Patent number: 9363833
    Abstract: The invention relates to a wireless network with at least one base station and a plurality of associated terminals for the exchange of payload data and control data, and with at least one common transmission channel which is available for access to several terminals, wherein the base station is provided for controlling the access to the common transmission channel, wherein the terminals are provided for sending at least an access signal to the base station for the purpose of obtaining access to the common transmission channel, and wherein at least two different start moments can be assigned to the terminals for transmitting their respective access signals.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 7, 2016
    Assignee: Koninklijke Philips N.V.
    Inventor: Christoph Herrmann
  • Patent number: 9335424
    Abstract: An apparatus includes an integrator (120) that produces a pulse having a peak amplitude indicative of the energy of a detected photon. First discharging circuitry (136) discharges the integrator (120) at a first discharging speed, and second discharging circuitry (124) discharges the integrator (120) at a second discharging speed. The first discharging speed is less than the second discharging speed.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 10, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Christian Baeumer, Guenter Zeitler
  • Publication number: 20160113617
    Abstract: Calibration methods and related calibration controllers (CC) for calibrating imaging apparatuses (102) such as a 3D computed tomography imager or a 2D x-ray imager. The imaging apparatuses (102) are equipped with a dynamic beam shaper (RF). The dynamic beam shaper (RF) allows adapting the energy profile of a radiation beam (PR) used in the imaging apparatuses (102) to a shape of an object (PAT) to be imaged. A plurality of gain images are acquired in dependence on a shape of the object and the view along which the gain images are acquired or a target gain image is synthesized from a plurality of basis gain images (BGI).
    Type: Application
    Filed: June 19, 2014
    Publication date: April 28, 2016
    Inventors: Christoph HERRMANN, Bernd MENSER
  • Patent number: 9301378
    Abstract: An imaging system (300) includes a detector array (314) with direct conversion detector pixels that detect radiation traversing an examination region of the imaging system and generate a signal indicative of the detected radiation, a pulse shaper (316) configured to alternatively process the signal indicative of detected radiation generated by the detector array or a set of test pulses having different and known heights that correspond to different and known energy levels and to generate output pulses having heights indicative of the energy of the processed detected radiation or set of test pulses, and a thresholds adjuster (330) configured to analyze the heights of the output pulses corresponding to the set of test pulses in connection with the heights of set of test pulses and a set of predetermined fixed energy thresholds and generate a threshold adjustment signal indicative of a baseline based on a result of the analysis.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Randall Peter Luhta, Christoph Herrmann
  • Publication number: 20160076935
    Abstract: The invention relates to a method and a pulse processing circuit (100) for the processing of current pulses (CP) generated by incident photons (X) in a piece of converter material, for instance in a pixel (11) of a radiation detector. Deviations of the pulse shape from a reference are detected and used to identify pulse corruption due to pile-up effects at high count rates and/or charge sharing between neighboring pixels. The deviation detection may for instance be achieved by generating, with a pulse shaper (110), bipolar shaped pulses from the current pulse (CP) and/or two shaped pulses of different shapes which can be compared to each other.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 17, 2016
    Inventors: Heiner DAERR, Klaus Juergen ENGEL, Christoph HERRMANN, Roger STEADMAN BOOKER, Ewald ROESSL
  • Patent number: 9268035
    Abstract: An apparatus includes a pulse shaper (120) for receiving signals indicative of detected photons and generating a plurality of pulses therefrom to form a pulse train (200) and a peak detector (150) for sampling the pulse train (200) at an output of the pulse shaper (120). The peak detector (150) includes a circuit (300) for selectively detecting and sampling a maximum (202a, b, c) and a minimum (204a, b) value of the pulse train (200). The maximum (202a, b, c) and minimum (204a, b) values sampled are then converted from analog-to-digital format via an analog-to-digital converter (160).
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Publication number: 20150316663
    Abstract: The present invention relates to the correction of X-ray image information, e.g. the correction of X-ray image information regarding persistent currents in X-ray detector elements. X-ray detectors may be embodied as photoconductors with ohmic contacts, which output a photo current depending on the energy and amount of photons impinging on a respective photoconductor pixel. Such photoconductors may exhibit a photoconductive gain, i.e. the measured current when irradiated by X-ray is higher than the current, which would result from impinging photons only generating electron-hole pairs. To compensate for photoconductive gain a method (50) for image correction of X-ray image information is provided, comprising receiving (52) readout information of an X-ray detector element (14), wherein the readout information is dependent on impinging X- radiation (20) generating a photo current and compensating (54) the readout information for a photoconductive gain employing compensation information.
    Type: Application
    Filed: September 29, 2013
    Publication date: November 5, 2015
    Inventor: Christoph HERRMANN
  • Patent number: 9176238
    Abstract: The invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). A signal generation unit (20) generates a detection signal indicative of the energy of a detected photon while photons strike the detection device (6), and a baseline signal, which is affected by photons that previously struck the detection device (6), while photons are prevented from striking the detection device (6). A baseline shift determination unit (40) determines a baseline shift of the detection signal depending on the baseline signal. An energy determination unit (30) determines the energy of a detected photon depending on the detection signal and the determined baseline shift. Since the baseline shift of the detection signal is determined from a baseline signal that is generated while photons are prevented from striking the detection device (6), the baseline shift can be determined with higher accuracy, resulting in an improved energy determination.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker, Oliver Muelhens
  • Publication number: 20150285676
    Abstract: The invention relates to radiation detection with a directly converting semiconductor layer for converting an incident radiation into electrical signals. Sub-band infra-red (IR) irradiation considerably reduces polarization in the directly converting semi-conductor material when irradiated, so that counting is possible at higher tube currents without any baseline shift. An IR irradiation device is integrated into the readout circuit to which the crystal is flip-chip bonded in order to enable 4-side-buttable crystals.
    Type: Application
    Filed: November 8, 2013
    Publication date: October 8, 2015
    Inventors: Christoph Herrmann, Roger Steadman Booker