Patents by Inventor Christoph Herrmann

Christoph Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8581200
    Abstract: The invention relates to a radiation detector (200), particularly an X-ray detector, which comprises at least one sensitive layer (212) for the conversion of incident photons (X) into electrical signals. A two-dimensional array of electrodes (213) is located on the front side of the sensitive layer (212), while its back side carries a counter-electrode (211). The size of the electrodes (213) may vary in radiation direction (y) for adapting the counting workload of the electrodes. Moreover, the position of the electrodes (213) with respect to the radiation direction (y) provides information about the energy of the detected photons (X).
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: November 12, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Klaus Jürgen Engel, Guenter Zeitler, Christian Baeumer, Christoph Herrmann, Jens Wiegert, Roland Proksa, Ewald Rössl, Roger Steadman Booker
  • Patent number: 8576983
    Abstract: The invention relates to an X-ray detector (30) that comprises an array of sensitive elements (Pi?1,b, Pia, Pib, Pi+1,a, Pi+1,b) and at least two analyzer gratings (G2a, G2b) disposed with different phase and/or periodicity in front of two different sensitive elements. Preferably, the sensitive elements are organized in macro-pixels (IIi) of e.g. four adjacent sensitive elements, where analyzer gratings with mutually different phases are disposed in front said sensitive elements. The detector (30) can particularly be applied in an X-ray device (100) for generating phase contrast images because it allows to sample an intensity pattern (I) generated by such a device simultaneously at different positions.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: November 5, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Baeumer, Klaus Juergen Engel, Christoph Herrmann
  • Publication number: 20130284940
    Abstract: The invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). A signal generation unit (20) generates a detection signal indicative of the energy of a detected photon while photons strike the detection device (6), and a baseline signal, which is affected by photons that previously struck the detection device (6), while photons are prevented from striking the detection device (6). A baseline shift determination unit (40) determines a baseline shift of the detection signal depending on the baseline signal. An energy determination unit (30) determines the energy of a detected photon depending on the detection signal and the determined baseline shift. Since the baseline shift of the detection signal is determined from a baseline signal that is generated while photons are prevented from striking the detection device (6), the baseline shift can be determined with higher accuracy, resulting in an improved energy determination.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker, Oliver Muelhens
  • Patent number: 8564084
    Abstract: The invention relates to a radiation detector (10), comprising an array of pixels (1), wherein each pixel (1) comprises a conversion layer of a semiconductor material (4) for converting incident radiation into electrical signals and wherein each pixel (1) is surrounded by a trench (3) that is at least partly filled with a barrier material that absorbs at least a part of photons generated by the incident radiation. The invention also relates to a method of manufacturing such a radiation detector (10).
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: October 22, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Gereon Vogtmeier, Christoph Herrmann, Klaus Juergen Engel
  • Patent number: 8552858
    Abstract: Scattered radiation has non-intuitive properties. A signalling system (28) is presented which provides a perceptible signal (34) being indicative of a predicted or measured spatial distribution of scattered radiation. An embodiment provides for easy assessment of the individual risk of scattered radiation exposure for personnel working in an environment exposed to scattered radiation. A method for predicting a distribution of scattered radiation takes into account at least one object related parameter (18) and at least one radiation related parameter (22) and, in response hereto, predicts a distribution of scattered radiation.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 8, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Steffen Gunther Hohmann, Christian Baeumer, Joerg Bredno, Norbert Conrads, Olivier Ecabert, Klaus Juergen Engel, Christoph Herrmann, Rainer Kiewitt, Helko Lehmann
  • Publication number: 20130256541
    Abstract: The invention relates to a radiation detector (100) comprising a converter element (102) for converting incident high-energy radiation (X) into charge signals. A cathode (101) and an array(104) of anodes (103) are disposed on different sides of the converter element(102) for generating an electrical field (E0, Ed) within it The strength of said electrical field (E0, Ed) is increased in a first region(Rd) near the anode array(104) with respect to a second region(R0) remote from it. Such an increase may be achieved by doping the first region(Rd) with an electron acceptor. The increased field strength in the first region (Rd) favorably affects the sharpness of charge pulses generated by incident radiation.
    Type: Application
    Filed: December 2, 2011
    Publication date: October 3, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Klaus Jurgen Engel, Christoph Herrmann
  • Publication number: 20130237818
    Abstract: A radiation detector (16) having a first detector layer (24) and a second detector layer (26) encircles an examination region (14). Detectors of the first layer include scintillators (72) and light detectors (74), such as avalanche photodiodes. The detectors of the second detector layer (26) include scintillators (62) and optical detectors (64). The scintillators (72) of the first layer have a smaller cross-section than the scintillators (62) of the second layers. A group, e.g., nine, of the first layer scintillators (72) overlay each second group scintillator (62). In a CT mode, detectors of the first layer detect transmission radiation to generate a CT image with a relatively high resolution and the detectors of the second layer detect PET or SPECT radiation to generate nuclear data for reconstruction into a lower resolution emission image. Because the detectors of the first and second layers are aligned, the transmission and emission images are inherently aligned.
    Type: Application
    Filed: November 15, 2011
    Publication date: September 12, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Christoph Herrmann
  • Patent number: 8513613
    Abstract: The invention relates to a radiation detector (100), particularly for X-rays (X) and for ?-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 20, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker, Guenter Zeitler
  • Publication number: 20130168557
    Abstract: The invention relates to a radiation detector (100) and an associated method for the detection of (e.g. X or ?-) radiation. The detector (100) comprises a converter element (110) in which incident photons (X) are converted into electrical signals, and an array of anodes (130) for generating an electrical field (E) in the converter element (110). At least two anodes are associated with two steering electrodes (140) to which different potentials can be applied by a control unit (150). Preferably, each single anode or small group of anodes is surrounded by one steering electrode. The potentials of the steering electrodes (140) may be set as a function of the potentials that are induced in these electrodes when an operating voltage is applied between the anodes and a cathode (120). Moreover, a grid electrode (160) may be provided that at least partially encircles anodes (130) and their steering electrodes (140).
    Type: Application
    Filed: September 7, 2011
    Publication date: July 4, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Klaus Jurgen Engel, Roger Steadman Booker
  • Patent number: 8461542
    Abstract: The invention relates to a radiation detector and a method for its production, wherein a series of converter plates (110) and interconnect layers (120), which extend into a border volume (BV) lateral of the converter plates (110), are stacked. By filling voids in the border volume (BV) with an underfill material and cutting through the border volume, a contact surface (CS) is generated in which electrical leads (123) of the interconnect layers (120) lie free. To allow a good contacting, said leads (123) are preferably provided with enlargements in the contact surface, for example by bonding wires (132) to them.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 11, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Rob Van Asselt, Cornelis Slob, Nicolaas Johannes Anthonius Van Veen, Christian Baeumer, Roger Steadman Booker, Christoph Herrmann, Johannes Wilhelmus Weekamp, Klaus Jurgen Engel
  • Publication number: 20130097320
    Abstract: The present disclosure describes methods, systems, and computer program products for providing access to business network data. One method includes identifying a logical graph from business network linked graph data to be transformed into a resource graph, the logical graph including at least two nodes and at least one edge connecting a pair of nodes and defining a connection between the nodes. Each node is converted into a resource. A resource graph associated with the logical graph can be generated, where generation comprises, for each identified node, associating at least one attribute associated with the identified node as a resource attribute of the corresponding resource, adding at least one node connected to the identified node via an edge in the logical graph as a resource attribute of the corresponding resource, and dissolving at least one connection between the identified node and at least one other entity in the logical graph.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: SAP AG
    Inventors: Daniel Ritter, Christoph Herrmann, Ankur Bhatt
  • Patent number: 8378307
    Abstract: An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christian Baeumer, Christoph Herrmann, Roger Steadman, Walter Ruetten
  • Patent number: 8373132
    Abstract: The invention relates to a radiation detector and a method for producing such a detector, wherein the detector comprises a stack of the scintillator elements and photodiode arrays. The PDAs extend with electrical leads into a rigid body filling a border volume lateral of the scintillator elements, wherein said leads end in a contact surface of the border volume. Moreover, a redistribution layer is disposed on the contact surface, wherein electrical lines of the redistribution layer contact the leads of the PDAs.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 12, 2013
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Christian Baeumer, Oliver Muelhens, Roger Steadman Booker, Christoph Herrmann
  • Patent number: 8350221
    Abstract: The present invention relates to an apparatus (10) for generating countable pulses (30) from impinging X-ray (12, 14) in an imaging device (16), in particular in a computer tomograph, the apparatus (10) comprising a pre-amplifying element (18) adapted to convert a charge pulse (20) generated by an impinging photon (12, 14) into an electrical signal (22) and a shaping element (26) having a feedback loop (28) and adapted to convert the electrical signal (22) into an electrical pulse (30), wherein a delay circuit (38) is connected to the feedback loop (28) such that a time during which the feedback loop (28) collects charges of the electrical signal (22) is extended in order to improve an amplitude of the electrical pulse (30) at an output (56) of the shaping element (26). The invention also relates to a corresponding imaging device (16) and a corresponding method.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 8, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler, Hans Krüger, Walter Ruetten, Oliver Muelhens
  • Publication number: 20130003928
    Abstract: Device and method for synchronously switching activating a first and second charge accumulation section (31, 32) for a duration of a first and second predetermined sub-frame and a first and second X-ray source until lapse of a predetermined time frame for each of the first and second charge accumulation section (31, 32) for the accumulation of a plurality of temporally distributed partial charges according to an origin of a respective one of the plurality of spatially distributed X-ray sources so as to establish a specific relation between the focal spot position and a rule for accumulating the respective partial measurements, e.g. temporally distributed partial charges, belonging to the same focal spot positions, and to keep the focal spot temperature low by only activating the focal spot for a limited time according to a sub-frame.
    Type: Application
    Filed: March 4, 2011
    Publication date: January 3, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rainer Pietig, Walter Ruetten, Christoph Herrmann
  • Patent number: 8288733
    Abstract: An apparatus includes an x-ray source (112) that generates transmission radiation that traverses an examination region (108) and a detector (116) that includes a photo-converter (204) that detects the radiation and generates a signal indicative thereof. The photo-converter (204) includes a light receiving region (260) on a back side (264).5The light receiving region receives light indicative of the detected radiation. The photo-converter (204) further includes read-out electronics (240) within a front side (228), which is located opposite the back side (264). The read-out electronics (240) process a photo-current indicative of the received light to generate the signal indicative of the detected radiation. The photo-converter (204) further includes a photodiode (208, 212, 232) 10disposed between the light receiving region (260) and the read-out electronics (240). The photodiode (212) produces the photo-current.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: October 16, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christoph Herrmann, Rainer Kiewitt, Michael Overdick
  • Publication number: 20120228486
    Abstract: A radiation detector assembly (20) includes a detector array module (40) configured to convert radiation particles to electrical detection pulses, and an application specific integrated circuit (ASIC) (42) operatively connected with the detector array. The ASIC includes signal processing circuitry (60) configured to digitize an electrical detection pulse received from the detector array, and test circuitry (80) configured to inject a test electrical pulse into the signal processing circuitry. The test circuitry includes a current meter (84) configured to measure the test electrical pulse injected into the signal processing circuitry, and a charge pulse generator (82) configured to generate a test electrical pulse that is injected into the signal processing circuitry.
    Type: Application
    Filed: December 7, 2010
    Publication date: September 13, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Oliver Muelhens
  • Patent number: 8237128
    Abstract: The present invention relates to an apparatus (10) for counting X-ray photons (12, 14). The apparatus (10) comprises a sensor (16) adapted to convert a photon (12, 14) into a charge pulse, a processing element (18) adapted to convert the charge pulse (51) into an electrical pulse (53) and a first discriminator (20) adapted to compare the electrical pulse (53) against a first threshold (TH1) and to output an event (55) if the first threshold (TH1) is exceeded. A first counter (22) counts these events (55), unless counting is inhibited by a first gating element (24). The first gating element (24) is activated when the first discriminator (20) outputs the event (55), and it is deactivated, when the processing of a photon (12, 14) is found to be complete or about to be completed by a measurement or by the knowledge about the time that it takes to process a photon (12, 14) in the processing element (18). By activating and deactivating the first counter (22) pile-up events, i.e.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 7, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler
  • Patent number: 8193501
    Abstract: A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 5, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Walter Rutten, Matthias Simon, Rainer Kiewitt, Christoph Herrmann, Bernd Menser
  • Publication number: 20120085915
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Application
    Filed: September 23, 2008
    Publication date: April 12, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker