Patents by Inventor Christopher A. Schuh

Christopher A. Schuh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9765438
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: September 19, 2017
    Assignee: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Patent number: 9758888
    Abstract: Metal surface pretreatments using ionic liquids prior to electroplating are disclosed. The surface treatments include forming an activated metal substrate surface by removing any naturally formed metal oxide layers formed on the surfaces of the metal substrates. According to some embodiments, the surface treatments include exposing the metal substrate to a non-aqueous ionic liquid. In some embodiments, an electrical current is applied to the metal substrate to assist removal of the metal oxide layer. The electrical current can be a pulsed anodic current. After activating the surface, a metal layer can be deposited on the activated surface. In some embodiments, the metal layer is electrodeposited in the same ionic liquid used to form the activated surface. The resultant metal coating is resistant to scratching and peeling.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 12, 2017
    Assignee: Apple Inc.
    Inventors: Evgeniya Freydina, Shiyun Ruan, Christopher A. Schuh, Alan C. Lund
  • Publication number: 20170252807
    Abstract: Embodiments described herein relate generally to systems and methods for using nanocrystalline metal alloy particles or powders to create nanocrystalline and/or microcrystalline metal alloy articles using additive manufacturing. In some embodiments, a manufacturing method for creating articles includes disposing a plurality of nanocrystalline particles and selectively binding the particles together to form the article. In some embodiments, the nanocrystalline particles can be sintered to bind the particles together. In some embodiments, the plurality of nanocrystalline particles can be disposed on a substrate and sintered to form the article. The substrate can be a base or a prior layer of bound particles. In some embodiments, the nanocrystalline particles can be selectively bound together (e.g., sintered) at substantially the same time as they are disposed on the substrate.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Alan C. Lund, Christopher A. Schuh
  • Publication number: 20170234663
    Abstract: Nanocrystalline alloy penetrators and related methods are generally provided. In some embodiments, a munition comprises a nanocrystalline alloy penetrator. In certain embodiments, the nanocrystalline alloy has particular properties (e.g., grain size, grain isotropy, mechanical properties) such that the penetrator acts as a rigid body kinetic penetrator.
    Type: Application
    Filed: September 16, 2016
    Publication date: August 17, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Zachary Copoulos Cordero, Mansoo Park
  • Patent number: 9694562
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 4, 2017
    Assignee: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen
  • Publication number: 20170167472
    Abstract: Articles and methods in which an electric field is used to actuate a material are generally described. Provided in one embodiment is a method including applying an electric field to a ceramic material. Applying the electric field to the ceramic material can transform the ceramic material from a first solid phase to a second distinct solid phase. The applied electric field is less than a breakdown electric field of the ceramic material, according to certain embodiments.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 15, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Alan Lai
  • Patent number: 9548678
    Abstract: Articles and methods in which an electric field is used to actuate a material are generally described. Provided in one embodiment is a method including applying an electric field to a ceramic material. Applying the electric field to the ceramic material can transform the ceramic material from a first solid phase to a second distinct solid phase. The applied electric field is less than a breakdown electric field of the ceramic material, according to certain embodiments.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: January 17, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Alan Lai
  • Publication number: 20170009360
    Abstract: Embodiments of electrodeposited current collectors and their methods of use and manufacturer described. For example, in one embodiment, an electrochemical power cell includes an anode including a first current collector and an anode active material deposited on the first current collector. The electrochemical power cell also includes a cathode including a second current collector and a cathode active material deposited on the second current collector. At least one of the first current collector and the second current collector is an electrodeposited aluminum foil. In another embodiment, a current collector includes a free standing foil made from electrodeposited aluminum.
    Type: Application
    Filed: April 8, 2016
    Publication date: January 12, 2017
    Applicant: Xtalic Corporation
    Inventors: Christopher A. Schuh, Alan C. Lund
  • Patent number: 9512039
    Abstract: Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an average elongated domain length. The ceramic material is configured as an oligocrystalline ceramic material structure having a total structural surface area that is greater than a total grain boundary area in the oligocrystalline ceramic material structure. The oligocrystalline ceramic material structure includes an oligocrystalline ceramic structural feature which has an extent that is less than the average elongated domain length of the crystalline ceramic material.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 6, 2016
    Assignees: Massachusetts Institute of Technology, Nanyang Technological University
    Inventors: Christopher A. Schuh, Alan Lai, Zehui Du
  • Publication number: 20160265089
    Abstract: In a method for controlling energy damping in a shape memory alloy, provided is a shape memory alloy having a composition including at least one of: Cu in at least about 10 wt. %, Fe in at least about 5 wt. %, Au in at least about 5 wt. %, Ag in at least about 5 wt. %, Al in at least about 5 wt. %, In in at least about 5 wt. %, Mn in at least about 5 wt. %, Zn in at least about 5 wt. % and Co in at least about 5 wt. %. The shape memory alloy is configured into a structure including a structural feature having a surface roughness and having a feature extent that is greater than about 1 micron and less than about 1 millimeter. Energy damping of the structural feature is modified by exposing the structural feature to process conditions that alter the surface roughness of the structural feature.
    Type: Application
    Filed: November 15, 2013
    Publication date: September 15, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher SCHUH, Stian Melhus UELAND
  • Publication number: 20150354046
    Abstract: There is provided herein a shape memory alloy wire that includes an alloy composition of CuAlMnNi and excluding grain refiner elements. The alloy composition includes 20 at %-28 at % Al, 2 at %-4 at % Ni, 3 at %-5 at % Mn with Cu as a remaining balance of the alloy composition. The alloy composition is disposed as an elongated wire of at least about 1 meter in length, having a wire diameter of less than about 150 microns. At least about 50 vol % of said alloy composition along said wire length has an oligocrystalline microstructure as-disposed in the wire and without thermal treatment of the wire.
    Type: Application
    Filed: May 6, 2015
    Publication date: December 10, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Nihan Tuncer, Christopher A. Schuh
  • Publication number: 20150337420
    Abstract: A mechanical structure is provided with a crystalline super alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.
    Type: Application
    Filed: June 24, 2015
    Publication date: November 26, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Publication number: 20150322582
    Abstract: Metal surface pretreatments using ionic liquids prior to electroplating are disclosed. The surface treatments include forming an activated metal substrate surface by removing any naturally formed metal oxide layers formed on the surfaces of the metal substrates. According to some embodiments, the surface treatments include exposing the metal substrate to a non-aqueous ionic liquid. In some embodiments, an electrical current is applied to the metal substrate to assist removal of the metal oxide layer. The electrical current can be a pulsed anodic current. After activating the surface, a metal layer can be deposited on the activated surface. In some embodiments, the metal layer is electrodeposited in the same ionic liquid used to form the activated surface. The resultant metal coating is resistant to scratching and peeling.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 12, 2015
    Inventors: Evgeniya Freydina, Shiyun Ruan, Christopher A. Schuh, Alan C. Lund
  • Publication number: 20150280614
    Abstract: Articles and methods in which an electric field is used to actuate a material are generally described. Provided in one embodiment is a method including applying an electric field to a ceramic material. Applying the electric field to the ceramic material can transform the ceramic material from a first solid phase to a second distinct solid phase. The applied electric field is less than a breakdown electric field of the ceramic material, according to certain embodiments.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 1, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Alan Lai
  • Patent number: 9091314
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 28, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Publication number: 20150197838
    Abstract: Methods to enhance the quality of grain boundary networks are described. The process can result in the production of a metal including a relatively large fraction of special grain boundaries (e.g., a fraction of special grain boundaries of at least about 55%).
    Type: Application
    Filed: April 22, 2014
    Publication date: July 16, 2015
    Applicants: Massachusetts Institute of Technology, Mitsubishi Materials Corporation Intellectual Property Dept.
    Inventors: Kenichi Yaguchi, Christopher A. Schuh
  • Patent number: 9074294
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: July 7, 2015
    Assignee: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20150125338
    Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: March 12, 2012
    Publication date: May 7, 2015
    Inventors: Heather Murdoch, Christopher A. Schuh
  • Patent number: 8936857
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: January 20, 2015
    Assignee: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen
  • Publication number: 20150010778
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh