Patents by Inventor Christopher A. Schuh

Christopher A. Schuh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150008135
    Abstract: Methods for the use of nanocrystalline or amorphous metals or alloys as coatings with industrial processes are provided. Three, specific, such methods have been detailed. One of the preferred embodiments provides a method for the high volume electrodeposition of many components with a nanocrystalline or amorphous metal or alloy, and the components produced thereby. Another preferred embodiment provides a method for application of a nanocrystalline or amorphous coatings in a continuous electrodeposition process and the product produced thereby. Another of the preferred embodiments of the present invention provides a method for reworking and/or rebuilding components and the components produced thereby.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 8, 2015
    Applicant: Xtalic Corporation
    Inventors: Christopher A. Schuh, Alan C. Lund
  • Publication number: 20150004434
    Abstract: Coated articles and methods for applying coatings including a rhodium layer are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 1, 2015
    Applicant: Xtalic Corporation
    Inventors: Trevor Goodrich, John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20140373751
    Abstract: Provided in one embodiment is a coating composition, comprising: a first compound comprising a niobium element, a carbon element, and at least one non-metal element that is capable of forming a second compound with the niobium element or a combination of the niobium element and the carbon element.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 25, 2014
    Inventors: Christopher A. Schuh, Rafael A. Mesquita
  • Publication number: 20140374263
    Abstract: Al—Mnx/Al—Mny multilayers with a wide range of structures ranging from microcrystalline to nanocrystalline and amorphous were electrodeposited using a single bath method under galvanostatic control from room temperature ionic liquid. By varying the Mn composition by ?1-3 at. % between layers, the grain sizes in one material can be systematically modulated between two values. For example, one specimen alternates between grain sizes of about 21 and 52 nm, in an alloy of average composition of 10.3 at. % Mn. Nanoindentation testing revealed multilayers with finer grains and higher Mn content exhibited better resistance to plastic deformation. Other alloy systems also are expected to be electrodeposited under similar circumstances.
    Type: Application
    Filed: August 2, 2012
    Publication date: December 25, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, INC.
    Inventors: Wenjun Cai, Christopher A. Schuh
  • Patent number: 8906216
    Abstract: Bipolar current electrodeposits a nanocrystalline grain size. Polarity Ratio relates the absolute value of time integrated amplitude of negative polarity and positive polarity current. Grain size can be controlled in alloys of two or more components, one of which being a metal, and one of which being most electro-active. Typically the more electro-active material is preferentially lessened in the deposit during negative current. The deposit is relatively crack and void free. Grain size is typically a function of deposit composition, which is typically a function of Polarity Ratio. Specified grain size can be achieved by selecting a corresponding Polarity Ratio. Coatings can be in layers, each having a grain size, which can vary layer to layer and also in a graded fashion. A finished article may be built upon a substrate of electro-conductive plastic, or metal, including steels, aluminum, brass. The substrate may remain, or be removed.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: December 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew J. Detor, Christopher A. Schuh
  • Publication number: 20140348203
    Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Heather A. Murdoch, Christopher A. Schuh
  • Publication number: 20140326849
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.
    Type: Application
    Filed: September 13, 2012
    Publication date: November 6, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Patent number: 8876990
    Abstract: Methods to enhance the quality of grain boundary networks are described. The process can result in the production of a metal including a relatively large fraction of special grain boundaries (e.g., a fraction of special grain boundaries of at least about 55%).
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: November 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Koichi Kita
  • Publication number: 20140311207
    Abstract: Methods to enhance the quality of grain boundary networks are described. The process can result in the production of a metal including a relatively large fraction of special grain boundaries (e.g., a fraction of special grain boundaries of at least about 55%).
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicants: Massachusetts Institute of Technology, Mitsubishi Materials Corporation Intellectual Property Dept.
    Inventors: Kenichi Yaguchi, Christopher A. Schuh
  • Publication number: 20140271325
    Abstract: Provided in one embodiment is a method, comprising: sintering a plurality of nanocrystalline particulates to form a nanocrystalline alloy, wherein at least some of the nanocrystalline particulates may include a non-equilibrium phase comprising a first metal material and a second metal material, and the first metal material may be soluble in the second metal material. The sintered nanocrystalline alloy may comprise a bulk nanocrystalline alloy.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Christopher A. Schuh, Mansoo Park
  • Publication number: 20140255693
    Abstract: Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an average elongated domain length. The ceramic material is configured as an oligocrystalline ceramic material structure having a total structural surface area that is greater than a total grain boundary area in the oligocrystalline ceramic material structure. The oligocrystalline ceramic material structure includes an oligocrystalline ceramic structural feature which has an extent that is less than the average elongated domain length of the crystalline ceramic material.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicants: NANYANG TECHNOLOGICAL UNIVERSITY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher A. Schuh, Alan Lai, Zehui Du
  • Publication number: 20140242409
    Abstract: Bipolar wave current, is used to electrodeposit a nanocrystalline grain size. Polarity Ratio is the ratio of absolute value of time integrated amplitude of negative and positive polarity current. Grain size can be controlled in alloys of two or more components, at least one of which is a metal, and at least one of which is most electro-active, such as nickel and tungsten and molybdenum. Typically, the more electro-active material is preferentially lessened during negative current. Coatings can be layered, each having an average grain size, which can vary layer to layer and also graded through a region. Deposits can be substantially free of either cracks or voids.
    Type: Application
    Filed: May 7, 2014
    Publication date: August 28, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Andrew J. Detor, Christopher A. Schuh
  • Publication number: 20140234663
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 21, 2014
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Patent number: 8728630
    Abstract: Bipolar wave current, is used to electrodeposit a nanocrystalline grain size. Polarity Ratio is the ratio of absolute value of time integrated amplitude of negative and positive polarity current. Grain size can be controlled in alloys of two or more components, at least one of which is a metal, and at least one of which is most electro-active. Typically, the more electro-active material is preferentially lessened during negative current. Current density, duration of pulse portions, and bath composition are determined with reference to relations showing grain size as a function of deposit composition, and deposit composition as a function of Polarity Ratio, or a single relation showing grain size as a function of Polarity ratio. A specified size can be achieved by selecting a corresponding Polarity Ratio. Coatings can be layered, each having an average grain size, which can vary layer to layer and also graded through a region.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 20, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew J. Detor, Christopher A. Schuh
  • Publication number: 20140061056
    Abstract: Methods for the use of nanocrystalline or amorphous metals or alloys as coatings with industrial processes are provided. Three, specific, such methods have been detailed. One of the preferred embodiments provides a method for the high volume electrodeposition of many components with a nanocrystalline or amorphous metal or alloy, and the components produced thereby. Another preferred embodiment provides a method for application of a nanocrystalline or amorphous coatings in a continuous electrodeposition process and the product produced thereby. Another of the preferred embodiments of the present invention provides a method for reworking and/or rebuilding components and the components produced thereby.
    Type: Application
    Filed: August 5, 2013
    Publication date: March 6, 2014
    Applicant: Xtalic Corporation
    Inventors: Christopher A. Schuh, Alan C. Lund
  • Patent number: 8652649
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 18, 2014
    Assignee: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20130260176
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 3, 2013
    Applicant: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen
  • Patent number: 8500986
    Abstract: Methods for the use of nanocrystalline or amorphous metals or alloys as coatings with industrial processes are provided. Three, specific, such methods have been detailed. One of the preferred embodiments provides a method for the high volume electrodeposition of many components with a nanocrystalline or amorphous metal or alloy, and the components produced thereby. Another preferred embodiment provides a method for application of a nanocrystalline or amorphous coatings in a continuous electrodeposition process and the product produced thereby. Another of the preferred embodiments of the present invention provides a method for reworking and/or rebuilding components and the components produced thereby.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: August 6, 2013
    Assignee: Xtalic Corporation
    Inventors: Christopher Schuh, Alan Lund
  • Patent number: 8445116
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Grant
    Filed: November 27, 2011
    Date of Patent: May 21, 2013
    Assignee: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen
  • Patent number: 8282746
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: October 9, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen