Patents by Inventor Christopher F. Lyons

Christopher F. Lyons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6605546
    Abstract: A method for forming a semiconductor device comprises forming a first layer over a semiconductor substrate. At least one hole is formed through the first layer. A bottom anti-reflective coating (BARC) layer is formed in the at least one hole. A first heating is performed to heat the BARC layer to a flow temperature. A second heating is performed to heat the BARC layer to a hardening temperature so that the BARC layer hardens, wherein the hardening temperature is greater than the flow temperature. An etch is performed to form a trench in the first layer and over the at least one hole, wherein the hardened BARC layer in the at least one hole acts as an etch resistant layer during the etch. As an alternative to the second heating step, the BARC may be simply hardened. The first and second heating may be performed within a heating chamber without removing the semiconductor substrate.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: August 12, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Wolfram Grundke, Bhanwar Singh, Christopher F. Lyons, Marina V. Plat
  • Patent number: 6605413
    Abstract: There is provided a method for forming a photoresist layer for photolithographic applications which has increased structural strength. The photoresist layer is exposed through a mask and developed. The photoresist layer is then reacted with a stabilizer agent to change its material properties before the photoresist layer is dried. Also provided are a semiconductor fabrication method employing a stabilizer-treated photoresist and a composition for a photoresist that strengthens when exposed to a stabilizer agent.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: August 12, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Ramkumar Subramanian
  • Patent number: 6599810
    Abstract: An insulated trench isolation structure is formed by ion implanting impurities proximate to the trench edges for enhancing the oxidation rate and, hence, increasing the thickness of the oxide at the trench edges. Embodiments include ion implanting impurities prior to growing an oxide liner. The resulting thick oxide on the trench edges avoids overlap of a subsequently deposited polysilicon layer and breakdown problems attendant upon a thinned gate oxide at the trench edges.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: July 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6593035
    Abstract: A pellicle utilizes a thin film attached to a frame. The film is relatively transparent to radiation. The frame is coupled to a periphery of the film and is exclusive of the center portion of the film. The pellicle can be manufactured by growing a relatively transparent film on a silicon substrate and removing the substrate to expose at least a portion of the relatively transparent film.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Harry J. Levinson, Christopher F. Lyons
  • Patent number: 6589711
    Abstract: There is provided a method of making a dual inlaid via in a first layer. The first layer may be a polymer intermetal dielectric, such as HSQ, of a semiconductor device. The method includes forming a first opening, such as a via, in the first layer and forming a bilayer resist in the first opening. The bilayer resist includes an imaging layer above a bottom antireflective coating (BARC). The imaging layer is selectively exposed to radiation such that no radiation reaches the lower section of the BARC in the first opening through the upper section of the BARC. The bilayer resist is pattered, and a second opening, such as a trench, is formed in communication with the first opening using the patterned bilayer resist as a mask.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: July 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Christopher F. Lyons, Marina V. Plat, Bhanwar Singh
  • Patent number: 6566214
    Abstract: A method of making a semiconductor device is provided. A polysilicon layer is formed over a substrate and a metal layer is formed on the polysilicon layer. The metal layer and the polysilicon layer are annealed to form a metal silicide layer on the polysilicon layer. The metal silicide layer is patterned and the polysilicon layer is then patterned using the patterned metal silicide layer as a mask. The patterned metal silicide and polysilicon layers may be used as a gate electrode of a MOSFET.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: May 20, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Ramkumar Subramanian, Scott A. Bell, Todd P. Lukanc, Marina V. Plat
  • Patent number: 6563221
    Abstract: In a method for forming a connection structure in an integrated circuit, a first conducting material is deposited over a substrate and patterned to form a conducting stud in electrical contact with a conducting element of the substrate. A dielectric is formed over the substrate and the conducting stud. A trench is formed in the dielectric to expose a top portion of the conducting stud, and a second conducting material is inlaid in the trench to form wiring in electrical contact with the conducting stud. The electrically conducting element of the substrate may be an element of a semiconductor device or a wiring, contact or via. The first conducting material may be aluminum, and the second conducting material may be copper. The dielectric may be formed as a single layer and may be an organic low-k dielectric. Related connection structures are also disclosed.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: May 13, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Scott A. Bell, Todd P. Lukanc, Christopher F. Lyons, Marina V. Plat, Ramkumar Subramanian
  • Patent number: 6558965
    Abstract: A method of forming a semiconductor device is described. A bottom anti-reflective coating (BARC) is formed in a plurality of holes and on a first surface of a layer of a semiconductor device. A scatterometry measurement on at least a portion of the BARC is performed to produce measurement diffraction data. A thickness of the BARC in the plurality of holes is predicted by comparing the first diffraction data to a model of diffraction data to provide a predicted thickness, tp, and it is determined if the predicted thickness, tp, is within a target thickness range, &Dgr;td. The forming of the BARC is controlled in response to the prediction of the BARC thickness. A corresponding thickness control device for controlling the BARC thickness is also disclosed.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: May 6, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bhanwar Singh, Ramkumar Subramanian, Christopher F. Lyons, Marina V. Plat
  • Patent number: 6548423
    Abstract: A method utilizing a multilayer anti-reflective coating layer structure. The multilayer anti-reflective coating structure can be utilized as a hard mask forming various integrated circuit structures. A multilayer anti-reflective coating structure can be utilized to form gate stacks comprised of polysilicon and a dielectric layer. A photoresist is applied above the multilayer anti-reflective coating.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: April 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Marina V. Plat, Christopher F. Lyons, Scott A. Bell, Todd P. Lukanc
  • Patent number: 6544885
    Abstract: A method of forming a conductor pattern on a base with uneven topography includes placing conductor material on the base, placing a hard mask material on the conductor material, planarizing an exposed surface of the hard mask material, and placing a layer of resist on the hard mask material. The resist is patterned and the patterned resist is used in selectively etching the hard mask material, with the hard mask material used in selectively etching the underlying conductor material. By planarizing the hard mask material prior to placing a layer of resist thereupon, uniformity of the resist coating is enhanced and depth of focus problems in exposing the resist are reduced.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: April 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Khanh B. Nguyen, Harry J. Levinson, Christopher F. Lyons, Scott A. Bell, Fei Wang, Chih Yuh Yang
  • Patent number: 6544693
    Abstract: A pellicle utilizes a thin film attached to a substrate. The film is relatively transparent to radiation. The substrate is coupled to a periphery of the film and is exclusive of the center portion of the film. The pellicle can be manufactured by growing a relatively transparent film on a substrate and etching the substrate to expose a portion of the relatively transparent film.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: April 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Harry J. Levinson, Christopher F. Lyons
  • Patent number: 6541360
    Abstract: A bi-layer trim etch process to form integrated circuit gate structures can include depositing an organic underlayer over a layer of polysilicon, depositing an imaging layer over the organic underlayer, patterning the imaging layer, selectively trim etching the organic underlayer to form a pattern, and removing portions of the polysilicon layer using the pattern formed from the removed portions of organic underlayer. Thus, the use of thin imaging layer, that has high etch selectivity to the organic underlayer, allows the use of trim etch techniques without a risk of resist erosion or the aspect ratio pattern collapse. That, in turn, allows for the formation of the gate pattern with widths less than the widths of the pattern of the imaging layer.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: April 1, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Marina V. Plat, Scott A. Bell, Christopher F. Lyons, Ramkumar Subramanian, Bhanwar Singh
  • Patent number: 6534418
    Abstract: An exemplary method of using silicon containing imaging layers to define sub-resolution gate structures can include depositing an anti-reflective coating over a layer of polysilicon, depositing an imaging layer over the anti-reflective coating, selectively etching the anti-reflective coating to form a pattern, and removing portions of the polysilicon layer using the pattern formed from the removed portions of anti-reflective coating. Thus, the use of thin imaging layer, that has high etch selectivity to the organic underlayer, allows the use of trim etch techniques without a risk of resist erosion or aspect ratio pattern collapse. That, in turn, allows for the formation of the gate pattern with widths less than the widths of the pattern of the imaging layer.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: March 18, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Marina V. Plat, Scott A. Bell, Christopher F. Lyons, Ramkumar Subramanian, Bhanwar Singh
  • Patent number: 6528372
    Abstract: A method of forming features on a semiconductor device uses sidewall spacers, and includes providing a sidewall template having first and second sidewall regions. A spacer layer of a spacer material is formed over the sidewall template. The spacer layer is then etched in a first etch to remove a first region of the spacer layer over the first sidewall region while leaving a second region of the spacer layer over the second sidewall region. The spacer layer is again etched in a second etch to for at least one sidewall spacer.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: March 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Todd P. Lukanc, Christopher F. Lyons
  • Publication number: 20030003751
    Abstract: A method of forming features on a semiconductor device uses sidewall spacers, and includes providing a sidewall template having first and second sidewall regions. A spacer layer of a spacer material is formed over the sidewall template. The spacer layer is then etched in a first etch to remove a first region of the spacer layer over the first sidewall region while leaving a second region of the spacer layer over the second sidewall region. The spacer layer is again etched in a second etch to for at least one sidewall spacer.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 2, 2003
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Todd P. Lukanc, Christopher F. Lyons
  • Publication number: 20020164544
    Abstract: A dual damascene process is described. A sacrificial post is formed using a photolithographic process which may include exposing photoresist through a bright field photomask. An interlevel dielectric, such as a low-k dielectric, is formed on the post, and a trench etched exposing the post. The post is then removed, thereby forming a hole. A conducting layer is then formed in the hole and the trench.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Todd P. Luckanc, Scott A. Bell, Christopher F. Lyons, Marina V. Plat, Ramkumar Subramanian
  • Patent number: 6458691
    Abstract: There is provided a method of making a dual inlaid via in a first layer. The first layer may be a polymer intermetal dielectric, such as HSQ, of a semiconductor device. The method includes forming a first opening, such as a via, in the first layer and forming an inorganic base radiation sensitive layer in the first opening. The radiation sensitive layer may be a polysilane imaging layer. The inorganic base radiation sensitive layer is selectively exposed to radiation and then patterned. A second opening, such a trench, is formed in communication with the first opening using the patterned inorganic base radiation sensitive layer as a mask. A conductive layer may be formed in the dual inlaid via to complete a dual damascene process.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: October 1, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Christopher F. Lyons, Marina V. Plat, Bhanwar Singh
  • Publication number: 20020127477
    Abstract: A pellicle utilizes a thin film attached to a substrate. The film is relatively transparent to radiation. The substrate is coupled to a periphery of the film and is exclusive of the center portion of the film. The pellicle can be manufactured by growing a relatively transparent film on a substrate and etching the substrate to expose a portion of the relatively transparent film.
    Type: Application
    Filed: January 26, 2001
    Publication date: September 12, 2002
    Applicant: Advanced Micro Devices, Inc..
    Inventors: Harry J. Levinson, Christopher F. Lyons
  • Patent number: 6448164
    Abstract: A method of forming either a gate pattern or a line pattern in a resist by using a dark field mask and a combination of a negative photoresist and a positive photoresist. The dark field mask is used to create a hole within the positive photoresist, by exposing only a portion of the positive photoresist to light, and then by subjecting the positive photoresist to a developer. The negative photoresist is formed within the hole of the positive photoresist, and etched or polished so that it is only disposed within the hole. The negative photoresist and the positive photoresist are subjected to a flood light exposure, and then to a developer. This causes the positive photoresist to dissolve, leaving the negative photoresist, thereby providing a very-small-dimension resist pattern that can be used to form either a gate or a line for a semiconductor device.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: September 10, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Ramkumar Subramanian, Marina V. Plat, Todd P. Lukanc
  • Patent number: 6440640
    Abstract: A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a transition metal layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the transition metal layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the transition metal layer. The first etch step includes an etch chemistry that is selective to the transition metal layer over the ultra-thin photoresist layer and the dielectric layer. The transition metal layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: August 27, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Chih Yuh Yang, Christopher F. Lyons, Harry J. Levinson, Khanh B. Nguyen, Fei Wang, Scott A. Bell