Patents by Inventor Christopher J. Wiegand

Christopher J. Wiegand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10651093
    Abstract: Integrated circuits including MOSFETs with selectively recessed gate electrodes. Transistors having recessed gate electrodes with reduced capacitive coupling area to adjacent source and drain contact metallization are provided alongside transistors with gate electrodes that are non-recessed and have greater z-height. In embodiments, analog circuits employ transistors with gate electrodes of a given z-height while logic gates employ transistors with recessed gate electrodes of lesser z-height. In embodiments, subsets of substantially planar gate electrodes are selectively etched back to differentiate a height of the gate electrode based on a given transistor's application within a circuit.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Srijit Mukherjee, Christopher J. Wiegand, Tyler J. Weeks, Mark Y. Liu, Michael L. Hattendorf
  • Patent number: 10636960
    Abstract: MTJ material stacks with a laterally strained free magnetic layer, STTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular pMTJ material stacks included free magnetic layers that are compressively strained laterally by a surrounding material, which increases coercive field strength for a more stable device. In some embodiments, a pMTJ material stack is encased in a compressive-stressed material. In some further embodiments, a pMTJ material stack is encased first in a dielectric shell, permitting a conductive material to be deposited over the shell as the compressive-stressed, strain-inducing material layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Prashanth P. Madras, MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Oleg Golonzka, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Tahir Ghani, Kaan Oguz
  • Patent number: 10580970
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular MTJ material stacks with free magnetic layers are magnetically coupled through a metal material layer for improved stability and low damping. In some advantageous embodiments, layers of a free magnetic material stack are magnetically coupled through a coupling layer of a metal comprising at least molybdenum (Mo). The Mo may be in pure form or alloyed with other constituents.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10559744
    Abstract: An apparatus including an array of memory cells arranged in a grid defined by word lines and bit lines in a generally orthogonal orientation relative to one another, a memory cell including a resistive memory component and an access transistor, wherein the access transistor includes a diffusion region disposed at an acute angle relative to an associated word line. A method including etching a substrate to form a plurality of fins each including a body having a length dimension including a plurality of first junction regions and a plurality of second junction regions that are generally parallel to one another and offset by angled channel regions displacing in the length dimension an end of a first junction region from the beginning of a second junction region; removing the spacer material; and introducing a gate electrode on the channel region of each of the plurality of fins.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Brian Maertz, Christopher J. Wiegand, Daniel G. Oeullette, Md Tofizur Rahman, Oleg Golonzka, Justin S. Brockman, Tahir Ghani, Brian S. Doyle, Kevin P. O'Brien, Mark L. Doczy, Kaan Oguz
  • Publication number: 20200006635
    Abstract: A memory device includes a perpendicular magnetic tunnel junction (pMTJ) stack, between a bottom electrode and a top electrode. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet structure on the tunnel barrier. The free magnet structure includes a first free magnet on the tunnel barrier and a second free magnet above the first free magnet, wherein at least a portion of the free magnet proximal to an interface with the free magnet includes a transition metal. The free magnet structure having a transition metal between the first and the second free magnets advantageously improves the switching efficiency of the MTJ, while maintaining a thermal stability of at least 50 kT.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Tofizur Rahman, Christopher J. Wiegand, Justin S. Brockman, Daniel G. Ouellette, Angeline K. Smith, Andrew Smith, Pedro A. Quintero, Juan G. Alzate-Vinasco, Oleg Golonzka
  • Publication number: 20190393336
    Abstract: Metal chemical vapor deposition approaches for fabricating wrap-around contacts, and semiconductor structures having wrap-around metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor feature above a substrate. A dielectric layer is over the semiconductor feature, the dielectric layer having a trench exposing a portion of the semiconductor feature, the portion having a non-flat topography. A metallic contact material is directly on the portion of the semiconductor feature. The metallic contact material is conformal with the non-flat topography of the portion of the semiconductor feature. The metallic contact material has a total atomic composition including 95% or greater of a single metal species.
    Type: Application
    Filed: March 30, 2017
    Publication date: December 26, 2019
    Inventors: Jeffrey S. LEIB, Daniel B. BERGSTROM, Christopher J. WIEGAND
  • Publication number: 20190378972
    Abstract: A material layer stack for a pSTTM device includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free layer disposed on the tunnel barrier. The free layer further includes a stack of bilayers where an uppermost bilayer is capped by a magnetic layer including iron and where each of the bilayers in the free layer includes a non-magnetic layer such as Tungsten, Molybdenum disposed on the magnetic layer. In an embodiment, the non-magnetic layers have a combined thickness that is less than 15% of a combined thickness of the magnetic layers in the stack of bi-layers. A stack of bilayers including non-magnetic layers in the free layer can reduce the saturation magnetization of the material layer stack for the pSTTM device and subsequently increase the perpendicular magnetic anisotropy.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 12, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Kaan OGUZ, Daniel G. OUELLETTE, Brian MAERTZ, Kevin P. O'BRIEN, Mark L. DOCZY, Brian S. DOYLE, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20190334079
    Abstract: A material layer stack for a pSTTM memory device includes a magnetic tunnel junction (MTJ) stack, a oxide layer, a protective layer and a capping layer. The MTJ includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free magnetic layer disposed on the tunnel barrier. The oxide layer, which enables an increase in perpendicularity of the pSTTM material layer stack, is disposed on the free magnetic layer. The protective layer is disposed on the oxide layer, and acts as a protective barrier to the oxide from physical sputter damage during subsequent layer deposition. A conductive capping layer with a low oxygen affinity is disposed on the protective layer to reduce iron-oxygen de-hybridization at the interface between the free magnetic layer and the oxide layer. The inherent non-oxygen scavenging nature of the conductive capping layer enhances stability and reduces retention loss in pSTTM devices.
    Type: Application
    Filed: December 30, 2016
    Publication date: October 31, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Kaan OGUZ, Justin S. BROCKMAN, Daniel G. OUELLETTE, Brian MAERTZ, Kevin P. O'BRIEN, Mark L. DOCZY, Brian S. DOYLE, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20190288190
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10418415
    Abstract: Approaches for an interconnect cladding process for integrating magnetic random access memory (MRAM) devices, and the resulting structures, are described. In an example, a memory structure includes an interconnect disposed in a trench of a dielectric layer above a substrate, the interconnect including a diffusion barrier layer disposed at a bottom of and along sidewalls of the trench to an uppermost surface of the dielectric layer, a conductive fill layer disposed on the diffusion barrier layer and recessed below the uppermost surface of the dielectric layer and an uppermost surface of the diffusion barrier layer, and a conductive capping layer disposed on the conductive fill layer and between sidewall portions of the diffusion barrier layer. A memory element is disposed on the conductive capping layer of the interconnect.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: September 17, 2019
    Assignee: Intel Corporation
    Inventors: Christopher J. Wiegand, Oleg Golonzka, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Kevin P. O'Brien, Kaan Oguz, Tahir Ghani, Satyarth Suri
  • Patent number: 10411068
    Abstract: Disclosed herein are electrical contacts for magnetoresistive random access memory (MRAM) devices and related memory structures, devices, and methods. For example, and electrical contact for an MRAM device may include: a tantalum region; a barrier region formed of a first material; and a passivation region formed of a second material and disposed between the tantalum region and the barrier region, wherein the second material includes tantalum nitride and is different from the first material.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Christopher J. Wiegand, Oleg Golonzka, Kaan Oguz, Kevin P. O'Brien, Tofizur Rahman, Brian S. Doyle, Tahir Ghani, Mark L. Doczy
  • Publication number: 20190221734
    Abstract: Systems, apparatus, and methods for magnetoresitive memory are described. An apparatus for magnetoresitive memory includes a fixed layer, a free layer, and a tunneling barrier between the fixed layer and the free layer. The free layer is a new alloy consisting of a composition of Cobalt (Co), Iron (Fe), and Boron (B) intermixed with a non-magnetic metal according to a ratio. A thin insert layer of CoFeB may optionally be added between the alloy and the tunneling barrier.
    Type: Application
    Filed: September 30, 2016
    Publication date: July 18, 2019
    Applicant: INTEL CORPORATION
    Inventors: Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, Mark L. Doczy, Charles C. Kuo, Daniel G. Ouellette, Christopher J. Wiegand, MD Tofizur Rahman, Brian Maertz
  • Patent number: 10340445
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10326075
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Publication number: 20190181249
    Abstract: Embodiments herein describe techniques for a semi-conductor device comprising a channel having a first semiconductor material; a source contact coupled to the channel, comprising a first Heusler alloy; and a drain contact coupled to the channel, comprising a second Heusler alloy. The first Heusler alloy is lattice-matched to the first semiconductor material within a first predetermined threshold. A first Schottky barrier between the channel and the source contact, and a second Schottky barrier between the channel and the drain contact are negative, or smaller than another predetermined threshold. The source contact and the drain contact can be applied to a strained silicon transistor, an III-V transistor, a tunnel field-effect transistor, a dichalcogenide (MX2) transistor, and a junctionless nanowire transistor.
    Type: Application
    Filed: July 1, 2016
    Publication date: June 13, 2019
    Inventors: SASIKANTH MANIPATRUNI, ANURAG CHAUDHRY, DMITRI E. NIKONOV, JASMEET S. CHAWLA, CHRISTOPHER J. WIEGAND, KANWALJIT SINGH, UYGAR E. AVCI, IAN A. YOUNG
  • Publication number: 20190140166
    Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 9, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Brian MAERTZ, Daniel G. OUELLETTE, Kevin P. O'BRIEN, Kaan OGUZ, Brian S. DOYLE, Mark L. DOCZY, Daniel B. BERGSTROM, Justin S. BROCKMAN, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 10256395
    Abstract: An embodiment includes an apparatus comprising: a magnetic tunnel junction (MTJ), between first and second electrodes, comprising a dielectric layer between fixed and free layers; a dielectric film directly contacting sidewalls of the first electrode; and a metallic layer coupled to the sidewalls via the dielectric film; wherein (a) a vertical axis intersects the first and second electrodes and the MTJ but not the metallic layer, (b) a first horizontal axis intersects the metallic layer, the dielectric film, and the first electrode; and (c) a second horizontal axis, between the first horizontal axis and the MTJ, intersects the dielectric film and the first electrode but not the capping layer. Other embodiments are described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 9, 2019
    Assignee: Intel Corporation
    Inventors: Daniel R. Lamborn, Oleg Golonzka, Christopher J. Wiegand, Philip E. Heil, M D Tofizur Rahman, Rebecca J. Castellano, Tarun Bansal
  • Publication number: 20190049514
    Abstract: Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.
    Type: Application
    Filed: April 1, 2016
    Publication date: February 14, 2019
    Applicant: INTEL CORPORATION
    Inventors: KEVIN P. O'BRIEN, KAAN OGUZ, CHRISTOPHER J. WIEGAND, MARK L. DOCZY, BRIAN S. DOYLE, MD TOFIZUR RAHMAN, OLEG GOLONZKA, TAHIR GHANI
  • Publication number: 20190035690
    Abstract: Integrated circuits including MOSFETs with selectively recessed gate electrodes. Transistors having recessed gate electrodes with reduced capacitive coupling area to adjacent source and drain contact metallization are provided alongside transistors with gate electrodes that are non-recessed and have greater z-height. In embodiments, analog circuits employ transistors with gate electrodes of a given z-height while logic gates employ transistors with recessed gate electrodes of lesser z-height. In embodiments, subsets of substantially planar gate electrodes are selectively etched back to differentiate a height of the gate electrode based on a given transistor's application within a circuit.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 31, 2019
    Inventors: Srijit MUKHERJEE, Christopher J. WIEGAND, Tyler J. WEEKS, Mark Y. LIU, Michael L. HATTENDORF
  • Publication number: 20190036010
    Abstract: An apparatus including an array of memory cells arranged in a grid defined by word lines and bit lines in a generally orthogonal orientation relative to one another, a memory cell including a resistive memory component and an access transistor, wherein the access transistor includes a diffusion region disposed at an acute angle relative to an associated word line. A method including etching a substrate to form a plurality of fins each including a body having a length dimension including a plurality of first junction regions and a plurality of second junction regions that are generally parallel to one another and offset by angled channel regions displacing in the length dimension an end of a first junction region from the beginning of a second junction region; removing the spacer material; and introducing a gate electrode on the channel region of each of the plurality of fins.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 31, 2019
    Inventors: Brian MAERTZ, Christopher J. WIEGAND, Daniel G. OEULLETTE, MD Tofizur RAHMAN, Oleg GOLONZKA, Justin S. BROCKMAN, Tahir GHANI, Brian S. DOYLE, Kevin P. O'BRIEN, Mark L. DOCZY, Kaan OGUZ