Patents by Inventor Christopher S. Olsen

Christopher S. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10636650
    Abstract: Methods for conformal radical oxidation of structures are provided. In one implementation, the method comprises flowing hydrogen into a processing chamber at a first flow rate, wherein the processing chamber has a substrate positioned therein. The method further comprises flowing oxygen into a precursor activator at a second flow rate. The method further comprises flowing argon into the precursor activator at a third flow rate. The method further comprises generating a plasma in the precursor activator from the oxygen and argon. The method further comprises flowing the plasma into the processing chamber, wherein the plasma mixes with the hydrogen gas to create an activated processing gas. The method further comprises exposing the substrate to the activated gas to form an oxide film on the substrate. A growth rate of the oxide film is controlled by adjusting the third flow rate.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hansel Lo, Christopher S. Olsen, Eric Kihara Shono, Johanes S. Swenberg, Erika Hansen, Taewan Kim, Lara Hawrylchak
  • Patent number: 10636626
    Abstract: Embodiments of the present disclosure generally relate to a processing chamber for conformal oxidation of high aspect ratio structures. The processing chamber includes a chamber body with a first side and a second side opposite the first side, and a flow assembly disposed in the first side. The flow assembly includes a flow divider to direct fluid flow away from a center of a substrate disposed in a processing region of the processing chamber. The flow divider includes a crescent shaped first side, a top, and a bottom. The processing chamber also includes a distributed pumping structure located adjacent to the second side. The flow assembly is designed to reduce flow constriction of the radicals, leading to increased radical concentration and flux.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Vishwas Kumar Pandey, Kartik Shah, Christopher S. Olsen, Agus Sofian Tjandra, Hansel Lo, Eric Kihara Shono, Hemantha Raju
  • Publication number: 20190382917
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Christopher S. OLSEN, Theresa K. GUARINI, Jeffrey TOBIN, Lara HAWRYLCHAK, Peter STONE, Chi Wei LO, Saurabh CHOPRA
  • Patent number: 10428441
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20190295822
    Abstract: The present disclosure generally provides methods of providing at least metastable radical molecular species and, or, radical atomic species to a processing volume of a processing chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a processing chamber, where the gas injection assembly includes a body, a rigid dielectric liner disposed in the body, wherein the rigid dielectric liner defines a gas mixing volume, a first flange comprising a first mounting surface (to couple the gas injection assembly to a processing chamber), a second flange comprising a second mounting surface (to couple the gas injection assembly to the remote plasma source), and one or more gas injection ports formed through the body and the liner.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Christopher S. OLSEN, Agus Sofian TJANDRA, Eric Kihara SHONO
  • Publication number: 20190228951
    Abstract: Embodiments of the present disclosure generally relate to a processing chamber for conformal oxidation of high aspect ratio structures. The processing chamber includes a chamber body with a first side and a second side opposite the first side, and a flow assembly disposed in the first side. The flow assembly includes a flow divider to direct fluid flow away from a center of a substrate disposed in a processing region of the processing chamber. The flow divider includes a crescent shaped first side, a top, and a bottom. The processing chamber also includes a distributed pumping structure located adjacent to the second side. The flow assembly is designed to reduce flow constriction of the radicals, leading to increased radical concentration and flux.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 25, 2019
    Inventors: Vishwas Kumar PANDEY, Kartik SHAH, Christopher S. OLSEN, Agus Sofian TJANDRA, Hansel LO, Eric Kihara SHONO, Hemantha RAJU
  • Publication number: 20190228942
    Abstract: In one example, a chamber inlet assembly includes a chamber inlet, an outer coupling for a delivery line, and an inner coupling for a processing region of a processing chamber. The inner coupling and the outer coupling are on inner and outer ends, respectively, of the chamber inlet, wherein a cross-sectional area of the inner coupling is larger than a cross-sectional area of the outer coupling. The chamber inlet assembly also includes a longitudinal profile including the inner and outer ends and a first side and a second side, the first and second sides being on opposite sides of the chamber inlet, wherein a shape of the longitudinal profile comprises at least one of triangular, modified triangular, trapezoidal, modified trapezoidal, rectangular, modified rectangular, rhomboidal, and modified rhomboidal. The chamber inlet assembly also includes cassette including the chamber inlet and configured to set into a side wall of the processing chamber.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 25, 2019
    Inventors: Eric Kihara SHONO, Vishwas Kumar PANDEY, Christopher S. OLSEN, Hansel LO, Agus Sofian TJANDRA, Taewan KIM, Tobin KAUFMAN-OSBORN
  • Publication number: 20190221427
    Abstract: Methods for conformal radical oxidation of structures are provided. In one implementation, the method comprises flowing hydrogen into a processing chamber at a first flow rate, wherein the processing chamber has a substrate positioned therein. The method further comprises flowing oxygen into a precursor activator at a second flow rate. The method further comprises flowing argon into the precursor activator at a third flow rate. The method further comprises generating a plasma in the precursor activator from the oxygen and argon. The method further comprises flowing the plasma into the processing chamber, wherein the plasma mixes with the hydrogen gas to create an activated processing gas. The method further comprises exposing the substrate to the activated gas to form an oxide film on the substrate. A growth rate of the oxide film is controlled by adjusting the third flow rate.
    Type: Application
    Filed: December 20, 2018
    Publication date: July 18, 2019
    Inventors: Hansel LO, Christopher S. OLSEN, Eric Kihara SHONO, Johanes S. SWENBERG, Erika HANSEN, Taewan KIM, Lara HAWRYLCHAK
  • Publication number: 20190203332
    Abstract: Embodiments disclosed herein generally related to system for forming a semiconductor structure. The processing chamber includes a chamber body, a substrate support device, a quartz envelope, one or more heating devices, a gas injection assembly, and a pump device. The chamber body defines an interior volume. The substrate support device is configured to support one or more substrates during processing. The quartz envelope is disposed in the processing chamber. The quartz envelope is configured to house the substrate support device. The heating devices are disposed about the quartz envelope. The gas injection assembly is coupled to the processing chamber. The gas injection assembly is configured to provide an NH3 gas to the interior volume of the processing chamber. The pump device is coupled to the processing chamber. The pump device is configured to maintain the processing chamber at a pressure of at least 10 atm.
    Type: Application
    Filed: March 5, 2019
    Publication date: July 4, 2019
    Inventor: Christopher S. OLSEN
  • Publication number: 20190172712
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Christopher S. OLSEN, Peter STONE, Teng-fang KUO, Ping Han HSIEH, Manoj VELLAIKAL
  • Publication number: 20190105614
    Abstract: Gas injectors for providing uniform flow of fluid are provided herein. The gas injector includes a plenum body. The plenum body includes a recess, a protrusion adjacent to the recess and extending laterally away from the plenum body, and a plurality of nozzles extending laterally from an exterior surface of the plenum body. The plenum body has a plurality of holes in an exterior wall of the plenum body. Each nozzle is in fluid communication with an interior volume of the plenum body. By directing the flow of fluid, the gas injector provides for a uniform deposition.
    Type: Application
    Filed: August 29, 2018
    Publication date: April 11, 2019
    Inventors: Vishwas Kumar PANDEY, Lara HAWRYLCHAK, Eric Kihara SHONO, Kartik SHAH, Christopher S. OLSEN, Sairaju TALLAVARJULA, Kailash PRADHAN, Rene GEORGE, Johanes S. SWENBERG, Stephen MOFFATT
  • Publication number: 20190088485
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 21, 2019
    Inventors: Matthew Scott ROGERS, Roger CURTIS, Lara HAWRYLCHAK, Ken Kaung LAI, Bernard L. HWANG, Jeffrey TOBIN, Christopher S. OLSEN, Malcolm BEVAN
  • Patent number: 10211046
    Abstract: Embodiments of substrate support rings providing more uniform thickness of layers deposited or grown on a substrate are provided herein. In some embodiments, a substrate support ring includes: an inner ring with a centrally located support surface to support a substrate; and an outer ring extending radially outward from the support surface, wherein the outer ring comprises a reaction surface area disposed above and generally parallel to a support plane of the support surface, and wherein the reaction surface extends beyond the support surface by about 24 mm to about 45 mm.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: February 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Heng Pan, Lara Hawrylchak, Christopher S. Olsen
  • Patent number: 10199221
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: February 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Peter Stone, Teng-fang Kuo, Ping Han Hsieh, Manoj Vellaikal
  • Publication number: 20180347045
    Abstract: Embodiments of the present disclosure generally relate to a process chamber for conformal oxidation of high aspect ratio structures. The process chamber includes a liner assembly located in a first side of a chamber body and two pumping ports located in a substrate support portion adjacent a second side of the chamber body opposite the first side. The liner assembly includes a flow divider to direct fluid flow away from a center of a substrate disposed in a processing region of the process chamber. The liner assembly may be fabricated from quartz minimize interaction with process gases, such as radicals. The liner assembly is designed to reduce flow constriction of the radicals, leading to increased radical concentration and flux. The two pumping ports can be individually controlled to tune the flow of the radicals through the processing region of the process chamber.
    Type: Application
    Filed: March 27, 2018
    Publication date: December 6, 2018
    Inventors: Christopher S. OLSEN, Eric Kihara SHONO, Lara HAWRYLCHAK, Agus Sofian TJANDRA, Chaitanya A. PRASAD
  • Publication number: 20180334902
    Abstract: A tool for screening unconventional reservoirs to determine the location of economically important accumulations of hydrocarbons early in a reservoir development process is described. Once the accumulations are identified, subsequent process such as drilling wells and producing hydrocarbons can begin.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 22, 2018
    Inventors: Christopher S. OLSEN, Andrew D. DEWHURST, Gerald E. MICHAEL, Anita E. CSOMA, Arijit MITRA
  • Publication number: 20180138038
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: Christopher S. OLSEN, Peter STONE, Teng-fang KUO, Ping Han HSIEH, Manoj VELLAIKAL
  • Publication number: 20180076026
    Abstract: A substrate oxidation assembly includes: a chamber body defining a processing volume; a substrate support disposed in the processing volume; a plasma source coupled to the processing volume; a steam source fluidly coupled to the processing volume; and a substrate heater. A method of processing a semiconductor substrate includes: initiating conformal radical oxidation of high aspect ratio structures of the substrate comprising: heating the substrate; and exposing the substrate to steam; and conformally oxidizing the substrate. A semiconductor device includes a silicon and nitrogen containing layer; a feature formed in the silicon and nitrogen containing layer having an aspect ratio of at least 40:1; and an oxide layer on the face of the feature having a thickness in a bottom region of the silicon and nitrogen containing layer that is at least 95% of a thickness of the oxide layer in a top region.
    Type: Application
    Filed: January 27, 2017
    Publication date: March 15, 2018
    Inventors: Christopher S. OLSEN, Taewan KIM
  • Publication number: 20180016705
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 18, 2018
    Inventors: Christopher S. OLSEN, Theresa K. GUARINI, Jeffrey TOBIN, Lara HAWRYLCHAK, Peter STONE, Chi Wei LO, Saurabh CHOPRA
  • Patent number: 9870921
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: January 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Peter Stone, Teng-fang Kuo, Ping Han Hsieh, Manoj Vellaikal