Patents by Inventor Christopher S. Olsen

Christopher S. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9869017
    Abstract: A method for forming an oxide layer having improved thickness uniformity on a substrate is disclosed. The method includes heating a substrate disposed in a processing chamber to a temperature less than about 700 degrees Celsius, flowing a first gas mixture into the processing chamber from a first gas inlet, and flowing a second gas mixture into the processing chamber from a second gas inlet. The composition and flow rate of the second gas mixture, and the composition and flow rate of the first gas mixture are controlled so the oxide layer formed on the substrate has improved thickness uniformity.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: January 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Agus Sofian Tjandra, Christopher S. Olsen, Emre Cuvalci, Lara Hawrylchak
  • Publication number: 20170349996
    Abstract: Embodiments disclosed herein generally related to system for forming a semiconductor structure. The processing chamber includes a chamber body, a substrate support device, a quartz envelope, one or more heating devices, a gas injection assembly, and a pump device. The chamber body defines an interior volume. The substrate support device is configured to support one or more substrates during processing. The quartz envelope is disposed in the processing chamber. The quartz envelope is configured to house the substrate support device. The heating devices are disposed about the quartz envelope. The gas injection assembly is coupled to the processing chamber. The gas injection assembly is configured to provide an NH3 gas to the interior volume of the processing chamber. The pump device is coupled to the processing chamber. The pump device is configured to maintain the processing chamber at a pressure of at least 10 atm.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 7, 2017
    Inventor: Christopher S. OLSEN
  • Patent number: 9809881
    Abstract: Embodiments of the present invention provide a method and apparatus for plasma processing a substrate to form a film on the substrate and devices disposed thereon by controlling the ratio of ions to radicals in the plasma at a given pressure. A given pressure may be maintained to promote ion production using one plasma source, and a second plasma source may be used to provide additional radicals. In one embodiment, a low pressure plasma is generated in a processing region having the substrate positioned therein, and a high pressure plasma is generated in separate region. Radicals from the high pressure plasma are injected into the processing region having the low pressure plasma, thus, altering the natural distribution of radicals to ions at a given operating pressure.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: November 7, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Matthew Scott Rogers, Zhong Qiang Hua, Christopher S. Olsen
  • Publication number: 20170316930
    Abstract: Embodiments of methods for treating dielectric layers are provided herein. In some embodiments, a method of treating a dielectric layer disposed on a substrate supported in a process chamber includes: (a) exposing the dielectric layer to an active radical species formed in a plasma for a first period of time; (b) heating the dielectric layer to a peak temperature of about 900 degrees Celsius to about 1200 degrees Celsius; and (c) maintaining the peak temperature for a second period of time of about 1 second to about 20 seconds.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: HENG PAN, MATTHEW SCOTT ROGERS, CHRISTOPHER S. OLSEN
  • Patent number: 9728401
    Abstract: Embodiments of methods for treating dielectric layers are provided herein. In some embodiments, a method of treating a dielectric layer disposed on a substrate supported in a process chamber includes: (a) exposing the dielectric layer to an active radical species formed in a plasma for a first period of time; (b) heating the dielectric layer to a peak temperature of about 900 degrees Celsius to about 1200 degrees Celsius; and (c) maintaining the peak temperature for a second period of time of about 1 second to about 20 seconds.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 8, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Heng Pan, Matthew Scott Rogers, Christopher S. Olsen
  • Publication number: 20170178894
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process to form an etched surface of the silicon-containing substrate and forming an epitaxial layer on the etched surface of the silicon-containing substrate. The plasma etch process comprises flowing an etchant gas mixture comprising a fluorine-containing precursor and a hydrogen-containing precursor into a substrate-processing region of a first processing chamber and forming a plasma from the etchant gas mixture flowed into the substrate-processing region.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 22, 2017
    Inventors: Peter STONE, Christopher S. OLSEN, Teng-fang KUO, Ping Han HSIEH, Zhenwen DING
  • Patent number: 9683308
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20170084456
    Abstract: Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to methods and apparatuses for surface preparation prior to epitaxial deposition. In one implementation, a method of processing a substrate is provided. The method comprises etching a surface of a silicon-containing substrate by use of a plasma etch process, where at least one etching process gas comprising chlorine gas and an inert gas is used during the plasma etch process and forming an epitaxial layer on the surface of the silicon-containing substrate.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 23, 2017
    Inventors: Christopher S. OLSEN, Peter STONE, Teng-fang KUO, Ping Han HSIEH, Manoj VELLAIKAL
  • Patent number: 9514968
    Abstract: Methods and apparatus for improving selective oxidation against metals in a process chamber are provided herein. In some embodiments, a method of oxidizing a first surface of a substrate disposed in a process chamber having a processing volume defined by one or more chamber walls may include exposing the substrate to an oxidizing gas to oxidize the first surface; and actively heating at least one of the one or more chamber walls to increase a temperature of the one or more chamber walls to a first temperature of at least the dew point of water while exposing the substrate to the oxidizing gas.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: December 6, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Agus Tjandra, Christopher S. Olsen, Johanes Swenberg, Lara Hawrylchak
  • Patent number: 9502521
    Abstract: A non-volatile memory semiconductor device comprising a semiconductor substrate having a channel and a gate stack above the channel. The gate stack comprises a tunnel layer adjacent to the channel, a charge trapping layer above the tunnel layer, a charge blocking layer above the charge trapping layer, a control gate above the charge blocking layer, and an intentionally incorporated interface region between the charge trapping layer and the charge blocking layer. The charge trapping layer comprises a compound including silicon and nitrogen, the charge blocking layer contains an oxide of a charge blocking component, and the interface region comprises a compound including silicon, nitrogen and the charge blocking component. The tunnel layer may comprise up to three tunnel sub-layers, the charge trapping layer may comprise two trapping sub-layers, and the charge blocking layer may comprise up to five blocking sub-layers. Various gate stack formation techniques can be employed.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: November 22, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Udayan Ganguly, Christopher S. Olsen, Sean M. Seutter, Lucien Date
  • Publication number: 20160300712
    Abstract: Devices and methods for selectively oxidizing silicon are described herein. An apparatus for selective oxidation of exposed silicon surfaces includes a thermal processing chamber with a plurality of walls, first inlet connection and a second inlet connection, wherein the walls define a processing region within the processing chamber, a substrate support within the processing chamber, a hydrogen source connected with the first inlet connection, a heat source connected with the hydrogen source, and a remote plasma source connected with the second inlet connection and an oxygen source. A method for selective oxidation of non-metal surfaces, can include positioning a substrate in a processing chamber at a temperature less than 800° C., flowing hydrogen into the processing chamber, generating a remote plasma comprising oxygen, mixing the remote plasma with the hydrogen gas in the processing chamber to create an activated processing gas, and exposing the substrate to the activated gas.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Inventors: Heng PAN, Matthew Scott ROGERS, Agus S. TJANDRA, Christopher S. OLSEN
  • Patent number: 9431237
    Abstract: Methods and apparatus for post treating an oxide layer on a semiconductor substrate are disclosed. In one or more embodiments, the oxide layer is formed by thermal oxidation or plasma oxidation and treated with a plasma comprising helium. The helium-containing plasma may also include hydrogen, neon, argon and combinations thereof. In one or more embodiments, a SiO2 oxide layer is formed on a silicon substrate and treated with a plasma to improve the interface between the silicon substrate and the SiO2 oxide layer.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: August 30, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kai Ma, Christopher S. Olsen, Yoshitaka Yokota
  • Publication number: 20160010206
    Abstract: Embodiments disclosed herein generally include a method for forming an oxide layer having improved thickness uniformity on a substrate. The method includes heating a substrate disposed in a processing chamber to a temperature less than about 700 degrees Celsius, flowing a first gas mixture into the processing chamber from a first gas inlet, and flowing a second gas mixture into the processing chamber from a second gas inlet. The composition and flow rate of the second gas mixture, and the composition and flow rate of the first gas mixture are controlled so the oxide layer formed on the substrate has improved thickness uniformity.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 14, 2016
    Inventors: Agus Sofian TJANDRA, Christopher S. OLSEN, Emre CUVALCI, Lara HAWRYLCHAK
  • Patent number: 9123758
    Abstract: Methods and apparatus for mixing and delivery of process gases are provided herein. In some embodiments, a gas injection apparatus includes an elongate top plenum comprising a first gas inlet; an elongate bottom plenum disposed beneath and supporting the top plenum, the bottom plenum comprising a second gas inlet; a plurality of first conduits disposed through the bottom plenum and having first ends fluidly coupled to the top plenum and second ends disposed beneath the bottom plenum; and a plurality of second conduits having first ends fluidly coupled to the bottom plenum and second ends disposed beneath the bottom plenum; wherein a lower end of the bottom plenum is adapted to fluidly couple the gas injection apparatus to a mixing chamber such that the second ends of the plurality of first conduits and the second ends of the plurality of second conduits are in fluid communication with the mixing chamber.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 1, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Agus Sofian Tjandra, Kalyanjit Ghosh, Christopher S. Olsen, Umesh M. Kelkar
  • Publication number: 20150206777
    Abstract: Methods and apparatus for improving selective oxidation against metals in a process chamber are provided herein. In some embodiments, a method of oxidizing a first surface of a substrate disposed in a process chamber having a processing volume defined by one or more chamber walls may include exposing the substrate to an oxidizing gas to oxidize the first surface; and actively heating at least one of the one or more chamber walls to increase a temperature of the one or more chamber walls to a first temperature of at least the dew point of water while exposing the substrate to the oxidizing gas.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: AGUS TJANDRA, CHRISTOPHER S. OLSEN, JOHANES SWENBERG, LARA HAWRYLCHAK
  • Patent number: 9054048
    Abstract: Methods and apparatus for forming nitrogen-containing layers are provided herein. In some embodiments, a method includes exposing a first layer of a substrate to a plasma formed from a process gas comprising predominantly a mixture of ammonia (NH3) and a noble gas, wherein ammonia is about 0.5 to about 15 percent of the process gas; and maintaining the process chamber at a pressure of about 10 mTorr to about 80 mTorr while exposing the first layer to the plasma to transform at least an upper portion of the first layer into a nitrogen-containing layer.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 9, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Liu, Malcolm J. Bevan, Christopher S. Olsen, Johanes Swenberg
  • Patent number: 9012336
    Abstract: Disclosed are apparatus and methods for processing a substrate. The substrate having a feature with a layer thereon is exposed to an inductively coupled plasma which forms a substantially conformal layer.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: April 21, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Heng Pan, Matthew Scott Rogers, Johanes F. Swenberg, Christopher S. Olsen, Wei Liu, David Chu, Malcom J. Bevan
  • Patent number: 8993458
    Abstract: Methods and apparatus for improving selective oxidation against metals in a process chamber are provided herein. In some embodiments, a method of oxidizing a first surface of a substrate disposed in a process chamber having a processing volume defined by one or more chamber walls may include exposing the substrate to an oxidizing gas to oxidize the first surface; and actively heating at least one of the one or more chamber walls to increase a temperature of the one or more chamber walls to a first temperature of at least the dew point of water while exposing the substrate to the oxidizing gas.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 31, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Agus Tjandra, Christopher S. Olsen, Johanes Swenberg, Lara Hawrylchak
  • Publication number: 20150040822
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: July 22, 2014
    Publication date: February 12, 2015
    Inventors: Christopher S. OLSEN, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20150020736
    Abstract: Embodiments of substrate support rings providing more uniform thickness of layers deposited or grown on a substrate are provided herein. In some embodiments, a substrate support ring includes: an inner ring with a centrally located support surface to support a substrate; and an outer ring extending radially outward from the support surface, wherein the outer ring comprises a reaction surface area disposed above and generally parallel to a support plane of the support surface, and wherein the reaction surface extends beyond the support surface by about 24 mm to about 45 mm.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 22, 2015
    Inventors: Heng Pan, Lara Hawrylchak, Christopher S. Olsen