Patents by Inventor Chuan-Yi Lin

Chuan-Yi Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8779572
    Abstract: A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: July 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Patent number: 8742583
    Abstract: The formation of a seal ring in a semiconductor integrated circuit (IC) die is described. Through-silicon vias (TSVs) are typically formed in a semiconductor IC die to facilitate the formation of a three dimensional (3D) stacking die structure. The TSVs may be utilized to provide electrical connections between components in different dies of the 3D stacking die structure. A seal ring is formed in the inter-metal dielectric (IMD) layers of an IC die, enclosing an active circuit region. The real ring is formed prior to the formation of the TSVs, preventing moistures or other undesired chemical agents from diffusing into the active circuit region during the subsequent processes of forming TSVs.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Publication number: 20140054761
    Abstract: A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Patent number: 8609506
    Abstract: A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Patent number: 8314483
    Abstract: A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 20, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Publication number: 20120266857
    Abstract: The present invention discloses a barbeque grill lift cover structure comprising a combining base disposed separately at corresponding positions on both sides of the body, and a pair of link rods installed with an interval apart and at rear laterals of the combining base, and another end of the link rod is pivotally coupled to both sides of the cover separately to constitute the barbeque grill lift cover structure of the invention, and the link rods at both sides of the body and the cover can be pivotally coupled, such that when the cover is lifted open, the link rods are pivotally turned and guided to achieve a smooth lifting movement and maintain the lift cover stably.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Inventor: Chuan-Yi LIN
  • Publication number: 20120112322
    Abstract: The formation of a seal ring in a semiconductor integrated circuit (IC) die is described. Through-silicon vias (TSVs) are typically formed in a semiconductor IC die to facilitate the formation of a three dimensional (3D) stacking die structure. The TSVs may be utilized to provide electrical connections between components in different dies of the 3D stacking die structure. A seal ring is formed in the inter-metal dielectric (IMD) layers of an IC die, enclosing an active circuit region. The real ring is formed prior to the formation of the TSVs, preventing moistures or other undesired chemical agents from diffusing into the active circuit region during the subsequent processes of forming TSVs.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 10, 2012
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Patent number: 8168529
    Abstract: The formation of a seal ring in a semiconductor integrated circuit (IC) die is described. Through-silicon vias (TSVs) are typically formed in a semiconductor IC die to facilitate the formation of a three dimensional (3D) stacking die structure. The TSVs may be utilized to provide electrical connections between components in different dies of the 3D stacking die structure. A seal ring is formed in the inter-metal dielectric (IMD) layers of an IC die, enclosing an active circuit region. The real ring is formed prior to the formation of the TSVs, preventing moistures or other undesired chemical agents from diffusing into the active circuit region during the subsequent processes of forming TSVs.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: May 1, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Publication number: 20110253194
    Abstract: A photoelectric conversion is capable of converting the light energy into electrical power, comprising a tempered glass layer, a lens module, a substrate and a heat sink unit, wherein the lens module is formed from a plurality of lens units, which locate at one side of the tempered glass layer. A gap is formed via a plurality of protruding poles located between the lens units and the tempered glass layer. The gap is filled with transparent rubbers. A plurality of receiving units is located one side of the substrate for dissipating heat energy from the receiving units. The light energy is converted through the receiving units into the electrical energy by focusing the light to the receiving units via the tempered glass layer and the lens module.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 20, 2011
    Inventors: Chien-Feng LIN, Cheng-Yu Huang, Te-Kai Ku, Chuan-Yi Lin
  • Publication number: 20110253883
    Abstract: A light collector is capable of collecting a incident light, comprises a light condenser having an incident surface and an exit surface, a light reflecting unit having two end surfaces and a receiving unit, wherein the incident light enters through the incident surface of the light condenser and the light condenser alters an optical distance and an optical direction of the incident light so that the incident light is transmitted evenly to the exit surface of the light condenser. A reflecting layer is positioned inside the light reflecting unit, and the light condenser is positioned at one end surface of the light reflecting unit in order to receive the incident light from the exit surface. The receiving unit is used to receive the incident light exiting from the light reflecting unit so that a photoelectrical process is carried out and the incident light is converted into electrical energy.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 20, 2011
    Inventors: Chien-Feng LIN, Cheng-Yu Huang, Te-Kai Ku, Chuan-Yi Lin
  • Patent number: 7825024
    Abstract: A method of forming a semiconductor device having a through-silicon via (TSV) is provided. A semiconductor device is provided having a first dielectric layer formed thereon. One or more dielectric layers are formed over the first dielectric layer, such that each of the dielectric layers have a stacking structure, wherein the stacking structures in the one or more dielectric layers are vertically aligned. The stacking structures may be, for example, metal rings. The stacking structures are then removed to form a first recess. A second recess is formed by extending the first recess into the substrate. The second recess is filled with a conductive material to form the TSV.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 2, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Song-Bor Lee, Ching-Kun Huang, Sheng-Yuan Lin
  • Publication number: 20100187671
    Abstract: The formation of a seal ring in a semiconductor integrated circuit (IC) die is described. Through-silicon vias (TSVs) are typically formed in a semiconductor IC die to facilitate the formation of a three dimensional (3D) stacking die structure. The TSVs may be utilized to provide electrical connections between components in different dies of the 3D stacking die structure. A seal ring is formed in the inter-metal dielectric (IMD) layers of an IC die, enclosing an active circuit region. The real ring is formed prior to the formation of the TSVs, preventing moistures or other undesired chemical agents from diffusing into the active circuit region during the subsequent processes of forming TSVs.
    Type: Application
    Filed: November 13, 2009
    Publication date: July 29, 2010
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Publication number: 20100187670
    Abstract: A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
    Type: Application
    Filed: November 12, 2009
    Publication date: July 29, 2010
    Inventors: Chuan-Yi Lin, Ching-Chen Hao, Chen Cheng Chou, Sheng-Yuan Lin
  • Publication number: 20100130003
    Abstract: A method of forming a semiconductor device having a through-silicon via (TSV) is provided. A semiconductor device is provided having a first dielectric layer formed thereon. One or more dielectric layers are formed over the first dielectric layer, such that each of the dielectric layers have a stacking structure, wherein the stacking structures in the one or more dielectric layers are vertically aligned. The stacking structures may be, for example, metal rings. The stacking structures are then removed to form a first recess. A second recess is formed by extending the first recess into the substrate. The second recess is filled with a conductive material to form the TSV.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Inventors: Chuan-Yi Lin, Song-Bor Lee, Ching-Kun Huang, Sheng-Yuan Lin
  • Patent number: 7645973
    Abstract: A solar-tracking power generating apparatus includes a plurality of sensing units having a directional light-extraction member each, a plurality of solar batteries associated with a light-gathering device each, and a solar trajectory simulation unit. Therefore, the solar-tracking power generating apparatus enables more accurate tracking of solar position and focusing of more sunlight on the solar batteries, so that the solar batteries could absorb more sunlight and convert the same into an increased amount of electric power.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: January 12, 2010
    Inventors: Chien-Feng Lin, Chuan-Yi Lin, Cheng-Min Chen
  • Publication number: 20090095342
    Abstract: A solar-tracking power generating apparatus includes a plurality of sensing units having a directional light-extraction member each, a plurality of solar batteries associated with a light-gathering device each, and a solar trajectory simulation unit. Therefore, the solar-tracking power generating apparatus enables more accurate tracking of solar position and focusing of more sunlight on the solar batteries, so that the solar batteries could absorb more sunlight and convert the same into an increased amount of electric power.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Inventors: Chien-Feng Lin, Chuan-Yi Lin, Cheng-Min Chen
  • Patent number: 7459756
    Abstract: Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: December 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lin, Wen-Chin Lee, Yee-Chia Yeo, Chuan-Yi Lin, Chenming Hu
  • Patent number: 7271431
    Abstract: According to the present invention, the integrated circuit includes isolation field regions on a semiconductor substrate. Gate dielectrics are formed on a surface of a substrate. Gate electrodes are formed on the gate dielectrics. A photo resist is formed covering the active regions. Dummy patterns are selectively etched. A dummy substrate is selectively etched. The photo resist is then removed. A pair of spacers is formed along opposite sidewalls of the gate electrode and the gate dielectric. The source and drain are formed on the surface of said substrate and on opposite sides of the gate. Silicide is formed on the gate electrode, source, and drain. A layer of inter-level dielectric is then formed. A contact opening and metal wiring are then formed.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 18, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Yi Lin, Shien-Yang Wu, Yee-Chia Yeo
  • Publication number: 20060286740
    Abstract: Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
    Type: Application
    Filed: August 29, 2006
    Publication date: December 21, 2006
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh LIN, Wen-Chin Lee, Yee-Chia Yeo, Chuan-Yi Lin, Chenming Hu
  • Patent number: D656774
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 3, 2012
    Assignee: Voka Enterprise Co., Ltd.
    Inventor: Chuan-Yi Lin