Patents by Inventor Chun-Wei Chen

Chun-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240163072
    Abstract: The present disclosure provides a calibration method and readable computer storage medium. The calibration method includes: configuring a reference signal source to output a reference signal; delaying the reference signal through a delay chain to output a delay signal; synchronous sampling the reference signal and the delay signal; adding 1 count and obtaining a final count value when the sampling result is in the preset state; determining whether a ratio between the count value and the first quantity is within a preset range; obtaining the average delay time according to the time width of the reference signal wave and the number of the delay units opened in the delay chain when the ratio is within the preset range; and outputting a control signal to the clock recovery circuit according to the average delay time to calibrate the delay time of the clock recovery circuit.
    Type: Application
    Filed: February 2, 2023
    Publication date: May 16, 2024
    Inventors: YU-CHIEH HSU, LING-WEI KE, CHUN-YU CHEN, HONG-YUN WEI
  • Publication number: 20240162220
    Abstract: A capacitor on a fin structure includes a fin structure. A dielectric layer covers the fin structure. A first electrode extension is embedded within the fin structure. A first electrode penetrates the dielectric layer and contacts the first electrode extension. A second electrode and a capacitor dielectric layer are disposed within the dielectric layer. The capacitor dielectric layer surrounds the second electrode, and the capacitor dielectric layer is between the second electrode and the first electrode extension.
    Type: Application
    Filed: December 8, 2022
    Publication date: May 16, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Yu Chen, Chun-Hao Lin, Yuan-Ting Chuang, Shou-Wei Hsieh
  • Patent number: 11985324
    Abstract: Exemplary video processing methods and apparatuses for encoding or decoding a current block by inter prediction are disclosed. Input data of a current block is received and partitioned into sub-partitions and motion refinement is independently performed on each sub-partition. A reference block for each sub-partition is obtained from one or more reference pictures according to an initial motion vector (MV). A refined MV for each sub-partition is derived by searching around the initial MV with N-pixel refinement. One or more boundary pixels of the reference block for a sub-partition is padded for motion compensation of the sub-partition. A final predictor for the current block is generated by performing motion compensation for each sub-partition according to its refined MV. The current block is then encoded or decoded according to the final predictor.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 14, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Yu-Cheng Lin, Chun-Chia Chen, Chih-Wei Hsu, Ching-Yeh Chen, Tzu-Der Chuang, Yu-Wen Huang
  • Patent number: 11983207
    Abstract: Embodiments of the present disclosure provide a method, an electronic device, and a computer program product for information processing. In an information processing method, based on multiple weights corresponding to multiple words in text, a computing device determines a target object associated with the text among predetermined multiple objects, and also determines, among the multiple words, a set of key words with respect to the determination of the target object. Next, the computing device determines, among the set of key words, a set of target words related to a text topic of the text. Then, the computing device outputs the set of target words and an identifier of the target object in an associated manner. In this way, the credibility of the target object associated with the text that is determined by the information processing method is improved, thereby improving the user experience of the information processing method.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: May 14, 2024
    Assignee: EMC IP Holding Company LLC
    Inventors: Zijia Wang, Jiacheng Ni, Zhen Jia, Bo Wei, Chun Xi Chen
  • Publication number: 20240152880
    Abstract: A multi-channel payment method for a multi-channel payment system comprises the payer or the payee who initiated the payment request logs in to the multi-channel payment system; the payer or the payee who initiated the payment request placing an order in the multi-channel payment system, wherein the order comprises a designated payment gateway; the multi-channel payment system determining a predicted fee of the order according to the designated payment gateway, past order records, and a real-time exchange rate; the multi-channel payment system performing an anti-money laundering verification of the order; the payer reviewing the order and the predicted fee through a multiple auditing method; and the multi-channel payment system executing payment from the payer to the payee according to the order and the designated payment gateway, and storing a payment detail of the order.
    Type: Application
    Filed: February 13, 2023
    Publication date: May 9, 2024
    Applicant: OBOOK INC.
    Inventors: Chun-Kai Wang, Chung-Han Hsieh, Chun-Jen Chen, Po-Hua Lin, Wei-Te Lin, Pei-Hsuan Weng, Mei-Su Wang, I-Cheng Lin, Cheng-Wei Chen
  • Patent number: 11978801
    Abstract: A method of forming a semiconductor device includes surrounding a dummy gate disposed over a fin with a dielectric material; forming a gate trench in the dielectric material by removing the dummy gate and by removing upper portions of a first gate spacer disposed along sidewalls of the dummy gate, the gate trench comprising a lower trench between remaining lower portions of the first gate spacer and comprising an upper trench above the lower trench; forming a gate dielectric layer, a work function layer and a glue layer successively in the gate trench; removing the glue layer and the work function layer from the upper trench; filling the gate trench with a gate electrode material after the removing; and removing the gate electrode material from the upper trench, remaining portions of the gate electrode material forming a gate electrode.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian-Jou Lian, Chun-Neng Lin, Chieh-Wei Chen, Tzu-Ang Chiang, Ming-Hsi Yeh
  • Publication number: 20240139938
    Abstract: A control method of a robotic arm is provided. The control method includes: setting a detection circuit, a comparing circuit and a switching circuit. The detection circuit detects the motion of the robotic arm to generate a detection signal. The comparing circuit compares the detection signal with a low threshold region and compares the detection signal with a high threshold region to generate a comparison signal. The switching circuit switches the robotic arm to a first motion mode or a second motion mode according to the comparison signal.
    Type: Application
    Filed: April 19, 2023
    Publication date: May 2, 2024
    Inventors: Chun-Yu CHEN, Shih-Wei WANG
  • Publication number: 20240145691
    Abstract: The present invention is related to a novel positive electrode active material for lithium-ion battery. The positive electrode active material is expressed by the following formula: Li1.2NixMn0.8-x-yZnyO2, wherein x and y satisfy 0<x?0.8 and 0<y?0.1. In addition, the present invention provides a method of manufacturing the positive electrode active material. The present invention further provides a lithium-ion battery which uses said positive electrode active material.
    Type: Application
    Filed: March 14, 2023
    Publication date: May 2, 2024
    Inventors: CHUAN-PU LIU, YIN-WEI CHENG, SHIH-AN WANG, BO-LIANG PENG, CHUN-HUNG CHEN, JUN-HAN HUANG, YI-CHANG LI
  • Patent number: 11973985
    Abstract: Various schemes pertaining to pre-encoding processing of a video stream with motion compensated temporal filtering (MCTF) are described. An apparatus determines a filtering interval for a received raw video stream having pictures in a temporal sequence. The apparatus selects from the pictures a plurality of target pictures based on the filtering interval, as well as a group of reference pictures for each target picture to perform pixel-based MCTF, which generates a corresponding filtered picture for each target picture. The apparatus subsequently transmits the filtered pictures as well as non-target pictures to an encoder for encoding the video stream. Subpictures of natural images and screen content images are separately processed by the apparatus.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: April 30, 2024
    Assignee: MediaTek Inc.
    Inventors: Chih-Yao Chiu, Chun-Chia Chen, Chih-Wei Hsu, Tzu-Der Chuang, Ching-Yeh Chen, Yu-Wen Huang
  • Patent number: 11967642
    Abstract: A semiconductor structure includes a buffer layer, a channel layer, a barrier layer, a doped compound semiconductor layer, and a composition gradient layer. The buffer layer is disposed on a substrate, the channel layer is disposed on the buffer layer, the barrier layer is disposed on the channel layer, the doped compound semiconductor layer is disposed on the barrier layer, and the composition gradient layer is disposed between the barrier layer and the doped compound semiconductor layer. The barrier layer and the composition gradient layer include a same group III element and a same group V element, and the atomic percentage of the same group III element in the composition gradient layer is gradually increased in the direction from the barrier layer to the doped compound semiconductor layer. A high electron mobility transistor and a fabrication method thereof are also provided.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: April 23, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chih-Yen Chen, Tuan-Wei Wang, Franky Juanda Lumbantoruan, Chun-Yang Chen
  • Patent number: 11964358
    Abstract: A method includes placing a polisher head on platen, the polisher head including a set of first magnets, and controlling a set of second magnets to rotate the polisher head on the platen, wherein controlling the set of second magnets includes reversing the polarity of at least one second magnet of the set of second magnets to produce a magnetic force on at least one first magnet of the set of first magnets, wherein the set of second magnets are external to the polisher head.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Yu Wang, Chun-Hao Kung, Ching-Hsiang Tsai, Kei-Wei Chen, Hui-Chi Huang
  • Publication number: 20240128252
    Abstract: The present application discloses a semiconductor structure. The semiconductor structure a top die and a bottom die, and the maximum die size is constrained to reticle dimension. Each die includes (1) core: computation circuits, (2) phy: analog circuit connecting to memory, (3) I/O: analog circuit connecting output elements, (4) SERDES: serial high speed analog circuit, (5) intra-stack connection circuit, and (6) cache memory. This semiconductor structure can be chapleted design for high wafer yield with least tape out masks for cost saving. The intra-stack connection circuit connects the top die and the bottom die in the shortest distance (about tens of micrometers), so as to provide high signal quality and power efficiency.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventors: TZU-WEI CHIU, CHUN-WEI CHANG, SHANG-PIN CHEN, WEI-CHIH CHEN, CHE-YEN HUANG
  • Publication number: 20240128211
    Abstract: Some implementations described herein provide techniques and apparatuses for a stacked semiconductor die package. The stacked semiconductor die package may include an upper semiconductor die package above a lower semiconductor die package. The stacked semiconductor die package includes one or more rows of pad structures located within a footprint of a semiconductor die of the lower semiconductor die package. The one or more rows of pad structures may be used to mount the upper semiconductor die package above the lower semiconductor die package. Relative to another stacked semiconductor die package including a row of dummy connection structures adjacent to the semiconductor die that may be used to mount the upper semiconductor die package, a size of the stacked semiconductor die package may be reduced.
    Type: Application
    Filed: April 27, 2023
    Publication date: April 18, 2024
    Inventors: Chih-Wei WU, An-Jhih SU, Hua-Wei TSENG, Ying-Ching SHIH, Wen-Chih CHIOU, Chun-Wei CHEN, Ming Shih YEH, Wei-Cheng WU, Der-Chyang YEH
  • Publication number: 20240120282
    Abstract: The present application discloses a semiconductor structure and methods for manufacturing semiconductor structures. The semiconductor structure includes a plurality of bottom dies and a top die stacked on the bottom dies. The bottom dies receive power supplies through tiny through silicon vias (TSVs) formed in backside substrates of the bottom dies, while the top die receives power supplies through dielectric vias (TDVs) formed in a dielectric layer that covers the bottom dies. By enabling backside power delivery to the bottom die, more space can be provided for trace routing between stacked dies. Therefore, greater computation capability can be achieved within a smaller chip area with less power loss.
    Type: Application
    Filed: February 20, 2023
    Publication date: April 11, 2024
    Inventors: TZU-WEI CHIU, CHUN-WEI CHANG, SHANG-PIN CHEN, WEI-CHIH CHEN, CHE-YEN HUANG
  • Patent number: 11955312
    Abstract: A physical analysis method, a sample for physical analysis and a preparing method thereof are provided. The preparing method of the sample for physical analysis includes: providing a sample to be inspected; and forming a contrast enhancement layer on a surface of the sample to be inspected. The contrast enhancement layer includes a plurality of first material layers and a plurality of second material layers stacked upon one another. The first material layer and the second material layer are made of different materials. Each one of the first and second material layers has a thickness that does not exceed 0.1 nm. In an image captured by an electron microscope, a difference between an average grayscale value of a surface layer image of the sample to be inspected and an average grayscale value of an image of the contrast enhancement layer is at least 50.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 9, 2024
    Assignee: MATERIALS ANALYSIS TECHNOLOGY INC.
    Inventors: Chien-Wei Wu, Keng-Chieh Chu, Yung-Sheng Fang, Chun-Wei Wu, Hung-Jen Chen
  • Patent number: 11956553
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 11946945
    Abstract: A sample analyzing method and a sample preparing method are provided. The sample analyzing method includes a sample preparing step, a placing step, and an analyzing step. The sample preparing step includes an obtaining step implemented by obtaining an identification information; and a marking and placing step implemented by placing a sample carrying component having a sample disposed thereon into a marking equipment, allowing the marking equipment to utilize the identification information to form an identification structure on the sample carrying component, and placing the sample carrying component into one of the accommodating slots according to the identification information. The placing step is implemented by taking out the sample carrying component from one of the accommodating slots and placing the sample carrying component into an electron microscope equipment. The analyzing step is implemented by utilizing the electron microscope equipment to photograph the sample to generate an analyzation image.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: April 2, 2024
    Assignee: MATERIALS ANALYSIS TECHNOLOGY INC.
    Inventors: Keng-Chieh Chu, Tsung-Ju Chan, Chun-Wei Wu, Hung-Jen Chen
  • Publication number: 20240105818
    Abstract: A semiconductor device includes a gate electrode over a channel region of a semiconductor fin, first spacers over the semiconductor fin, and second spacers over the semiconductor fin. A lower portion of the gate electrode is between the first spacers. An upper portion of the gate electrode is above the first spacers. The second spacers are adjacent the first spacers opposite the gate electrode. The upper portion of the gate electrode is between the second spacers.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Jian-Jou Lian, Chun-Neng Lin, Ming-Hsi Yeh, Chieh-Wei Chen, Tzu-Ang Chiang
  • Publication number: 20240105720
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a patterned mask on the second region; and performing a process to enlarge the first fin-shaped structure so that the top surfaces of the first fin-shaped structure and the second fin-shaped structure are different.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Hao Lin, Hsin-Yu Chen, Shou-Wei Hsieh
  • Publication number: 20240104879
    Abstract: In various examples, calibration techniques for interior depth sensors and image sensors for in-cabin monitoring systems and applications are provided. An intermediary coordinate system may be generated using calibration targets distributed within an interior space to reference 3D positions of features detected by both depth-perception and optical image sensors. Rotation-translation transforms may be determined to compute a first transform (H1) between the depth-perception sensor's 3D coordinate system and the 3D intermediary coordinate system, and a second transform (H2) between the optical image sensor's 2D coordinate system and the intermediary coordinate system. A third transform (H3) between the depth-perception sensor's 3D coordinate system and the optical image sensor's 2D coordinate system can be computed as a function of H1 and H2. The calibration targets may comprise a structural substrate that includes one or more fiducial point markers and one or more motion targets.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 28, 2024
    Inventors: Hairong JIANG, Yuzhuo REN, Nitin BHARADWAJ, Chun-Wei CHEN, Varsha Chandrashekhar HEDAU