Patents by Inventor Chun-Wei Chen

Chun-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955312
    Abstract: A physical analysis method, a sample for physical analysis and a preparing method thereof are provided. The preparing method of the sample for physical analysis includes: providing a sample to be inspected; and forming a contrast enhancement layer on a surface of the sample to be inspected. The contrast enhancement layer includes a plurality of first material layers and a plurality of second material layers stacked upon one another. The first material layer and the second material layer are made of different materials. Each one of the first and second material layers has a thickness that does not exceed 0.1 nm. In an image captured by an electron microscope, a difference between an average grayscale value of a surface layer image of the sample to be inspected and an average grayscale value of an image of the contrast enhancement layer is at least 50.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 9, 2024
    Assignee: MATERIALS ANALYSIS TECHNOLOGY INC.
    Inventors: Chien-Wei Wu, Keng-Chieh Chu, Yung-Sheng Fang, Chun-Wei Wu, Hung-Jen Chen
  • Patent number: 11946945
    Abstract: A sample analyzing method and a sample preparing method are provided. The sample analyzing method includes a sample preparing step, a placing step, and an analyzing step. The sample preparing step includes an obtaining step implemented by obtaining an identification information; and a marking and placing step implemented by placing a sample carrying component having a sample disposed thereon into a marking equipment, allowing the marking equipment to utilize the identification information to form an identification structure on the sample carrying component, and placing the sample carrying component into one of the accommodating slots according to the identification information. The placing step is implemented by taking out the sample carrying component from one of the accommodating slots and placing the sample carrying component into an electron microscope equipment. The analyzing step is implemented by utilizing the electron microscope equipment to photograph the sample to generate an analyzation image.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: April 2, 2024
    Assignee: MATERIALS ANALYSIS TECHNOLOGY INC.
    Inventors: Keng-Chieh Chu, Tsung-Ju Chan, Chun-Wei Wu, Hung-Jen Chen
  • Publication number: 20240105818
    Abstract: A semiconductor device includes a gate electrode over a channel region of a semiconductor fin, first spacers over the semiconductor fin, and second spacers over the semiconductor fin. A lower portion of the gate electrode is between the first spacers. An upper portion of the gate electrode is above the first spacers. The second spacers are adjacent the first spacers opposite the gate electrode. The upper portion of the gate electrode is between the second spacers.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Jian-Jou Lian, Chun-Neng Lin, Ming-Hsi Yeh, Chieh-Wei Chen, Tzu-Ang Chiang
  • Publication number: 20240105720
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a patterned mask on the second region; and performing a process to enlarge the first fin-shaped structure so that the top surfaces of the first fin-shaped structure and the second fin-shaped structure are different.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Hao Lin, Hsin-Yu Chen, Shou-Wei Hsieh
  • Publication number: 20240104879
    Abstract: In various examples, calibration techniques for interior depth sensors and image sensors for in-cabin monitoring systems and applications are provided. An intermediary coordinate system may be generated using calibration targets distributed within an interior space to reference 3D positions of features detected by both depth-perception and optical image sensors. Rotation-translation transforms may be determined to compute a first transform (H1) between the depth-perception sensor's 3D coordinate system and the 3D intermediary coordinate system, and a second transform (H2) between the optical image sensor's 2D coordinate system and the intermediary coordinate system. A third transform (H3) between the depth-perception sensor's 3D coordinate system and the optical image sensor's 2D coordinate system can be computed as a function of H1 and H2. The calibration targets may comprise a structural substrate that includes one or more fiducial point markers and one or more motion targets.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 28, 2024
    Inventors: Hairong JIANG, Yuzhuo REN, Nitin BHARADWAJ, Chun-Wei CHEN, Varsha Chandrashekhar HEDAU
  • Patent number: 11940828
    Abstract: A voltage tracking circuit is provided. The voltage tracking circuit includes first and second P-type transistors and a control circuit. The drain of the first P-type transistor is coupled to a first voltage terminal. The gate and the drain of the second P-type transistor are respectively coupled to the first voltage terminal and a second voltage terminal. The control circuit is coupled to the first and second voltage terminals and generates a control voltage according to the first voltage and the second voltage. The sources of the first and second P-type transistors are coupled to an output terminal of the voltage tracking circuit, and the output voltage is generated at the output terminal. In response to the second voltage being higher than the first voltage, the control circuit generates the control signal to turn off the first P-type transistor.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: March 26, 2024
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shao-Chang Huang, Yeh-Ning Jou, Ching-Ho Li, Kai-Chieh Hsu, Chun-Chih Chen, Chien-Wei Wang, Gong-Kai Lin, Li-Fan Chen
  • Patent number: 11943935
    Abstract: A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: March 26, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Shu-Ru Wang, Yu-Tse Kuo, Chang-Hung Chen, Yi-Ting Wu, Shu-Wei Yeh, Ya-Lan Chiou, Chun-Hsien Huang
  • Publication number: 20240096867
    Abstract: A semiconductor structure is provided and includes a first gate structure, a second gate structure, and at least one local interconnect that extend continuously across a non-active region from a first active region to a second active region. The semiconductor structure further includes a first separation spacer disposed on the first gate structure and first vias on the first gate structure. The first vias are arranged on opposite sides of the first separation spacer are isolated from each other and apart from the first separation spacer by different distances.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Charles Chew-Yuen YOUNG, Chih-Liang CHEN, Chih-Ming LAI, Jiann-Tyng TZENG, Shun-Li CHEN, Kam-Tou SIO, Shih-Wei PENG, Chun-Kuang CHEN, Ru-Gun LIU
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Publication number: 20240088030
    Abstract: Provided are semiconductor devices that include a first gate structure having a first end cap portion, a second gate structure having a second end cap portion coaxial with the first gate structure, a first dielectric region separating the first end cap portion and the second end cap portion, a first conductive element extending over the first gate structure, a second conductive element extending over the second gate structure, and a gate via electrically connecting the second gate structure and the second conductive element, with the first dielectric region having a first width and being positioned at least partially under the first conductive element and defines a spacing between the gate via and an end of the second end cap portion that exceeds a predetermined distance.
    Type: Application
    Filed: January 23, 2023
    Publication date: March 14, 2024
    Inventors: Chin-Liang CHEN, Chi-Yu LU, Ching-Wei TSAI, Chun-Yuan CHEN, Li-Chun TIEN
  • Publication number: 20240087902
    Abstract: The present disclosure is directed to methods and devices for devices including multiple die. A wafer is received having a plurality of die and a plurality of scribe lines. A dicing process is performed on the wafer. The dicing process includes identifying a first scribe line of the plurality of scribe lines, the first scribe line interposing a first die and a second die of the plurality of die; and performing a partial cut on the first scribe line. In embodiments, other scribe lines of the wafer are, during the dicing process, fully cut. After the dicing, the first die and the second die are mounted on a substrate such as an interposer. The first die and the second die are connected by a portion of the first scribe line, e.g., remaining from the partial cut, during the mounting.
    Type: Application
    Filed: January 19, 2023
    Publication date: March 14, 2024
    Inventors: Chieh-Lung LAI, Meng-Liang LIN, Chun-Yueh YANG, Hsien-Wei CHEN
  • Publication number: 20240087951
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11929398
    Abstract: Present disclosure provides a FinFET structure, including a substrate, a fin protruding from the substrate, including a first portion and a second portion below the first portion, wherein the first portion includes a first dopant concentration of a dopant, and the second portion includes a second dopant concentration of the dopant, the second dopant concentration is greater than the first dopant concentration, a gate over the fin, wherein the second portion of the fin is below a bottom surface of the gate, and an insulating layer over the substrate and proximal to the second portion of the fin, wherein at least a first portion of the insulating layer includes a third dopant concentration of the dopant, the third dopant concentration is greater than the first dopant concentration.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun Hsiung Tsai, Lai-Wan Chong, Chien-Wei Lee, Kei-Wei Chen
  • Publication number: 20240079356
    Abstract: An integrated circuit package includes an interposer, the interposer including: a first redistribution layer, a second redistribution layer over the first redistribution layer in a central region of the interposer, a dielectric layer over the first redistribution layer in a periphery of the interposer, the dielectric layer surrounding the second redistribution layer in a top-down view, a third redistribution layer over the second redistribution layer and the dielectric layer, and a first direct via extending through the dielectric layer. A conductive feature of the third redistribution layer is coupled to a conductive feature of the first redistribution layer through the first direct via.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 7, 2024
    Inventors: Hsien-Wei Chen, Chieh-Lung Lai, Meng-Liang Lin, Chun-Yueh Yang, Shin-Puu Jeng
  • Publication number: 20240076417
    Abstract: The present disclosure provides a method for manufacturing an auto-crosslinked hyaluronic acid gel, comprising conducting auto-crosslinking reaction of a colloid containing hyaluronic acid continuously at low temperature in an acidic environment, and treating the reaction product with steam at high temperature to obtain the auto-crosslinked hyaluronic acid gel with high viscosity.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 7, 2024
    Applicant: SCIVISION BIOTECH INC.
    Inventors: TAI-SHIEN HAN, TSUNG-WEI PAN, TOR-CHERN CHEN, CHUN-CHANG CHEN, PO-HSUAN LIN, LI-SU CHEN
  • Patent number: 11923199
    Abstract: Aspects of the disclosure provide a method. The method includes forming a structure over a substrate, and forming a spacer layer on the structure, wherein the spacer layer has a recess. The method includes forming a mask layer over the spacer layer and in the recess, the mask layer including a first layer, a second layer and a third layer. The method includes patterning the third layer of the mask layer, and etching the first layer and the second layer of the mask layer to form an opening to expose the recess of the spacer layer, wherein the opening in the second layer has a first width; and. The method includes removing the second layer using a wet etchant, wherein the opening in the third layer has a second width, and the second with is greater than the first width.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Chia Chen, Wan Hsuan Hsu, Chia-Wei Wu, Neng-Jye Yang, Chun-Li Chou
  • Patent number: 11923396
    Abstract: An integrated circuit includes a photodetector. The photodetector includes one or more dielectric structures positioned in a trench in a semiconductor substrate. The photodetector includes a photosensitive material positioned in the trench and covering the one or more dielectric structures. A dielectric layer covers the photosensitive material. The photosensitive material has an index of refraction that is greater than the indices of refraction of the dielectric structures and the dielectric layer.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wei Hsu, Tsai-Hao Hung, Chung-Yu Lin, Ying-Hsun Chen
  • Publication number: 20240069618
    Abstract: The disclosure provides a power management method. The power management method is applicable to an electronic device. The electronic device is electrically coupled to an adapter, and includes a system and a battery. The adapter has a feed power. The battery has a discharge power. The power management method of the disclosure includes: reading a power value of the battery; determining a state of the system; and discharging power to the system, when the system is in a power-on state and the power value is greater than a charging stopping value, by using the battery, and controlling, according to the discharge power and the feed power, the adapter to selectively supply power to the system. The disclosure further provides an electronic device using the power management method.
    Type: Application
    Filed: April 27, 2023
    Publication date: February 29, 2024
    Inventors: Wen Che CHUNG, Hui Chuan LO, Hao-Hsuan LIN, Chun TSAO, Jun-Fu CHEN, Ming-Hung YAO, Jia-Wei ZHANG, Kuan-Lun CHEN, Ting-Chao LIN, Cheng-Yen LIN, Chunyen LAI
  • Publication number: 20240070809
    Abstract: A method can include receiving a low-resolution (LR) image, extracting a first feature embedding from the LR image, performing a first upsampling to the LR image by a first upsampling factor to generate a upsampled image, receiving a LR coordinate of a pixel within the LR image and a first cell size of the LR coordinate, generating a first residual image based on the first feature embedding, the LR coordinate, and the first cell size of the LR coordinate using a local implicit image function, and generating a first high-resolution (HR) image by combining the first residual image and the upsampled image via element-wise addition.
    Type: Application
    Filed: April 12, 2023
    Publication date: February 29, 2024
    Applicants: MEDIATEK INC., National Tsing Hua University
    Inventors: Yu-Syuan XU, Hao-Wei CHEN, Chun-Yi LEE