Patents by Inventor Craig Breen

Craig Breen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150152324
    Abstract: A nanoparticle including an inorganic core comprising at least one metal and/or at least one semi-conductor compound comprising at least one metal includes a coating or shell disposed over at least a portion of a surface of the core. The coating can include one or more layers. Each layer of the coating can comprise a metal and/or at least one semiconductor compound. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein X represents, e.g.
    Type: Application
    Filed: September 29, 2014
    Publication date: June 4, 2015
    Inventors: CRAIG BREEN, MARSHALL COX, JONATHAN S. STECKEL
  • Patent number: 9034669
    Abstract: Methods for depositing material and nanomaterial onto a substrate are disclosed. Also disclosed are methods of making devices including nanomaterials, and a system useful for depositing materials and nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 19, 2015
    Assignee: QD VISION, INC.
    Inventors: Marshall Cox, LeeAnn Kim, Craig Breen, Maria J. Anc, Seth Coe-Sullivan, Peter T. Kazlas
  • Publication number: 20150086169
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Inventors: CRAIG BREEN, JOHN R. LINTON, JONATHAN S. STECKEL, MARSHALL COX, SETH COE-SULLIVAN, MARK COMERFORD
  • Publication number: 20150044806
    Abstract: A method for preparing semiconductor nanocrystals including a core and an overcoating layer is disclosed. According to one aspect of the invention, the method comprises preparing more than one batch of cores comprising a first semiconductor material and having a maximum emission peak within a predetermined spectral region, wherein each batch of cores is characterized by a first excitonic absorption peak at an absorption wavelength and a maximum emission peak at an emission wavelength; selecting a batch of cores from the batches prepared wherein the selected batch is characterized by a difference between the absorption wavelength and the emission wavelength that is less than or equal to 13; and overcoating the cores of the selected batch with a layer comprising a second semiconductor material.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 12, 2015
    Inventors: CRAIG A. BREEN, MAYANK PURI
  • Publication number: 20150021521
    Abstract: The present invention relates to a composition including quantum dots and an emission stabilizer, products including same, and methods, including methods for improving, or enhancing the emission stability of quantum dots. Inclusion of an emission stabilizer in a composition can improve or enhance the stability of at least one emissive property of the quantum dots in the composition against degradation compared to a composition that is the same in all respects except that it does not include the emission stabilizer. Examples of such emissive properties include, by way of example only, lumen output, lumen stability, color point (e.g., CIE x, CIE y) stability, wavelength stability, FWHM of the major peak emission, absorption, solid state EQE, and quantum dot emission efficiency.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 22, 2015
    Applicant: QD VISION, INC.
    Inventors: ROBERT J. NICK, CRAIG BREEN
  • Publication number: 20150021548
    Abstract: A semiconductor nanocrystal characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90° C. or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanocrystal at 25° C. is disclosed. A semiconductor nanocrystal having a multiple LO phonon assisted charge thermal escape activation energy of at least 0.5 eV is also disclosed. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 590 nm to 650 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 5.5. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 545 nm to 590 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 7.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 22, 2015
    Inventors: WENHAO LIU, CRAIG BREEN, SETH COE-SULLIVAN
  • Publication number: 20150021551
    Abstract: A coated quantum dot and methods of making coated quantum dots are provided. Products including quantum dots described herein are also disclosed.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 22, 2015
    Applicant: QD VISION, INC.
    Inventors: CRAIG BREEN, WENHAO LIU
  • Publication number: 20150013589
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Publication number: 20150014586
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Publication number: 20150014629
    Abstract: A coated quantum dot and methods of making coated quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Inventors: CRAIG BREEN, WENHAO LIU
  • Publication number: 20150010316
    Abstract: An anamorphic optical element and an adjustment mechanism for selectively rotating the optical element either around an axis substantially in a vertical direction, an axis substantially in an optical axis direction, an axis substantially in a plane formed by the vertical direction and the optical axis direction, or combination of axes thereof is used to vary a vertical separation between two or more spots.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Michael Plotkin, David Towner, Haim Livne, Peter Gysling, Craig Breen, Dale Wolin
  • Patent number: 8906265
    Abstract: A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: December 9, 2014
    Assignee: QD Vision, Inc.
    Inventors: Craig Breen, Jonathan S. Steckel, Dorai Ramprasad
  • Patent number: 8906804
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 9, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr.
  • Patent number: 8885239
    Abstract: An anamorphic optical element and an adjustment mechanism for selectively rotating the optical element either around an axis substantially in a vertical direction, an axis substantially in an optical axis direction, an axis substantially in a plane formed by the vertical direction and the optical axis direction, or combination of axes thereof is used to vary a vertical separation between two or more spots.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: November 11, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Plotkin, David Towner, Haim Livne, Peter Gysling, Craig Breen, Dale Wolin
  • Patent number: 8876272
    Abstract: An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a composition including one or more functional groups that are capable of being cross-linked is disclosed. An ink composition comprising a nanomaterial, a liquid vehicle, and scatterers is also disclosed. An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a perfluorocompound is further disclosed. A method for inkjet printing an ink including nanomaterial and a liquid vehicle with a surface tension that is not greater than about 25 dyne/cm is disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. Devices prepared from inks and methods of the invention are also described.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 4, 2014
    Assignee: QD Vision, Inc.
    Inventors: John R. Linton, Peter T. Kazlas, Craig Breen, Seth Coe-Sullivan
  • Patent number: 8870329
    Abstract: Detecting an issue in a digital printer that has an optical element positioned to direct a laser beam towards a photoconductor surface may include sending optical element position commands to move the optical element to compensate for inconsistent movements of a photoconductor drum and creating a record of the optical element position commands.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: October 28, 2014
    Assignee: Hewlett-Packard Indigo B.V.
    Inventors: Haggai Abbo, Martin Chauvin, Omry Flum, Yuri Baril, Sharon Nagler, Craig Breen, Shai Druckman, Ami Shiff, Avner Arnstein
  • Publication number: 20140312300
    Abstract: A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 23, 2014
    Applicant: QD VISION, INC.
    Inventors: DORAI RAMPRASAD, CRAIG BREEN, JONATHAN S. STECKEL
  • Patent number: 8849087
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 30, 2014
    Assignee: QD Vision, Inc.
    Inventors: Craig Breen, John R. Linton, Jonathan S. Steckel, Marshall Cox, Seth Coe-Sullivan, Mark Comerford
  • Patent number: 8845927
    Abstract: A nanoparticle has a semiconductor nanocrystal capable of emitting light. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein X represents, e.g., a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: September 30, 2014
    Assignee: QD Vision, Inc.
    Inventors: Craig Breen, Marshall Cox, Jonathan S. Steckel
  • Publication number: 20140284549
    Abstract: A semiconductor nanocrystal that emits green light having a peak emission with a full width at half maximum of about 30 nm or less at 100° C. and a method of making coated semiconductor nanocrystals are provided. Materials and other products including semiconductor nanocrystals described herein and materials and other products including semiconductor nanocrystals prepared by a method described herein are also disclosed.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, PETER M. ALLEN, ANNIE CHO WON, ZHIMING WANG, CRAIG A. BREEN