Patents by Inventor Craig Breen

Craig Breen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140227862
    Abstract: In one embodiment, a method for forming a coating comprising a semiconductor material on at least a portion of a population of semiconductor nanocrystals comprises providing a first mixture including semiconductor nanocrystals and an aromatic solvent, introducing one or more cation precursors and one or more anion precursors into the first mixture to form a reaction mixture for forming the semiconductor material, reacting the precursors in the reaction mixture, without the addition of an acid compound, under conditions sufficient to grow a coating comprising the semiconductor material on at least a portion of an outer surface of at least a portion of the semiconductor nanocrystals, and wherein an amide compound is formed in situ in the reaction mixture prior to isolating the coated semiconductor nanocrystals.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 14, 2014
    Applicant: QD VISION, INC.
    Inventors: Inja Song, Craig Breen
  • Publication number: 20140140918
    Abstract: A method for making semiconductor nanocrystals is disclosed, the method comprising adding a secondary phosphine chalcogenide to a solution including a metal source and a liquid medium at a reaction temperature to form a reaction product comprising a semiconductor comprising a metal and a chalcogen, and quenching the reaction mixture to form quantum dots. Methods for overcoating are also disclosed. Semiconductor nanocrystals are also disclosed.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicant: QD VISION, INC.
    Inventors: CRAIG BREEN, WENHAO LIU
  • Patent number: 8718437
    Abstract: A composition useful for altering the wavelength of visible or invisible light is disclosed. The composition comprising a solid host material and quantum confined semiconductor nanoparticles, wherein the nanoparticles are included in the composition in amount in the range from about 0.001 to about 15 weight percent based on the weight of the host material. The composition can further include scatterers. An optical component including a waveguide component and quantum confined semiconductor nanoparticles is also disclosed. A device including an optical component is disclosed. A system including an optical component including a waveguide component and quantum confined semiconductor nanoparticles and a light source optically coupled to the waveguide component is also disclosed. A decal, kit, ink composition, and method are also disclosed. A TFEL including quantum confined semiconductor nanoparticles on a surface thereof is also disclosed.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 6, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, John R. Linton, Craig Breen, Jonathan S. Steckel, Mark Comerford, Rohit Modi
  • Patent number: 8691114
    Abstract: A composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. Also disclosed is a composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 8, 2014
    Assignee: QD Vision, Inc.
    Inventors: Dorai Ramprasad, Craig Breen, Jonathan S. Steckel
  • Publication number: 20140027711
    Abstract: A quantum dot including a fluorine-containing ligand attached to a surface thereof and having a coating comprising a fluoropolymer over at least a portion of the outer surface of the quantum dot. A method for preparing a quantum dot with a coating comprising a fluoropolymer over at least a portion of the outer surface of the quantum dot is also disclosed. The method comprises contacting a quantum dot having a fluorine-containing ligand attached to a surface thereof with a fluoropolymer to coat the fluoropolymer over at least a portion of the outer surface of the quantum dot. A device including the quantum dot taught herein is further disclosed. An emissive material including the quantum dot taught herein is further disclosed.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: QD Vision, Inc.
    Inventors: Craig Breen, Jonathan S. Steckel
  • Publication number: 20140027712
    Abstract: A method for preparing a device, the method comprising: forming a first device layer over a first electrode, the layer comprising a metal oxide formed from a sol-gel composition that does not generate acidic by-products, and forming a second electrode over the first device layer, wherein the method further includes forming a layer comprising quantum dots over the first electrode before or after formation of the first device layer. Also disclosed is a device comprising a first device layer formed over a first electrode, the first device layer comprising a metal oxide formed by sol-gel processing that does not include acidic by-products, a second electrode over the first device layer, and a layer comprising quantum dots disposed between the first device layer and one of the two electrodes. A device prepared by the method is also disclosed.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: QD Vision, Inc.
    Inventor: Craig Breen
  • Publication number: 20140027713
    Abstract: A method for making a device, the method comprising: depositing a layer comprising quantum dots over a first electrode, the quantum dots including ligands attached to the outer surfaces thereof; treating the surface of the deposited layer comprising quantum dots to remove the exposed ligands; and forming a device layer thereover. Also disclosed is a device made in accordance with the disclosed method. Another aspect of the invention relates to a device comprising a first electrode and a second electrode, and a layer comprising quantum dots between the two electrodes, the layer comprising quantum dots deposited from a dispersion that have been treated to remove exposed ligands after formation of the layer in the device.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: QD Vision, Inc.
    Inventors: Marshall Cox, Craig Breen, Zhaoqun Zhou, Jonathan S. Steckel
  • Publication number: 20140004686
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 2, 2014
    Applicant: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR.
  • Patent number: 8614830
    Abstract: A method for designing a screen includes receiving screen information related to a picture element divided into a number of subunits of the picture element, and determining an amount of an ink to apply to a media at a location of the picture element in response to the information. The subunits of the picture element have a higher resolution than the resolution of a printing apparatus at which the printing element will be reproduced.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: December 24, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mani Fischer, Doron Shaked, Craig Breen, Rodolfo Jodra
  • Patent number: 8605332
    Abstract: An image processing method (300) for converting an original image (601) into a final, pixelated image (610) suitable for printing on a printer arranged to print two-tone images and capable of printing partial area exposed pixels, comprises antialiasing (301) the original image (601) into an intermediate pixelated image (605) comprising greyscale pixels having assigned greyscale values. The method comprises the further-step, of translating (302) the intermediate image (605) into the final, pixelated image (610) by translating the assigned greyscale values into partial exposure values indicative of the amount of desired pixel area for a corresponding pixel or pixels in the final image.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mani Fischer, Doron Shaked, Craig Breen, Dror Kella, Gidi Amir
  • Publication number: 20130234109
    Abstract: A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 12, 2013
    Applicant: QD Vision, Inc.
    Inventors: Craig Breen, Jonathan S. Steckel, Dorai Ramprasad
  • Publication number: 20130194340
    Abstract: Detecting an issue in a digital printer that has an optical element positioned to direct a laser beam towards a photoconductor surface may include sending optical element position commands to move the optical element to compensate for inconsistent movements of a photoconductor drum and creating a record of the optical element position commands.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Inventors: Haggai Abbo, Martin Chauvin, Omry Flum, Yuri Baril, Sharon Nagler, Craig Breen, Shai Druckman, Ami Shiff, Avner Arnstein
  • Patent number: 8470617
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 25, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 8404154
    Abstract: A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Craig Breen, Jonathan S. Steckel, Dorai Ramprasad
  • Publication number: 20130069018
    Abstract: A method for preparing semiconductor nanocrystals comprises reacting cation precursors and anion precursors in a reaction mixture including one or more acids, one or more phenol compounds, and a solvent to produce semiconductor nanocrystals having a predetermined composition. A method for forming a coating on at least a portion of a population of semiconductor nanocrystals is also disclosed. The method comprises forming a first mixture including a population of semiconductor nanocrystals, one or more amine compounds, and a first solvent; adding cation precursors and anion precursors to the first mixture at a temperature sufficient for growing a semiconductor material on at least a portion of an outer surface of at least a portion of the population of semiconductor nanocrystals; and initiating addition of one or more acids to the first mixture after addition of the cation and anion precursors is initiated. Semiconductor nanocrystals and populations thereof are also disclosed.
    Type: Application
    Filed: August 10, 2012
    Publication date: March 21, 2013
    Inventors: ZHENGGUO ZHU, Jonathan S. Steckel, Craig Breen, Justin W. Kamplain, Inia Song, Chunming Wang
  • Patent number: 8377333
    Abstract: A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: February 19, 2013
    Assignee: QD Vision, Inc.
    Inventors: Dorai Ramprasad, Craig Breen, Jonathan S. Steckel
  • Patent number: 8354785
    Abstract: A nanocrystal comprising a semiconductor material comprising one or more elements of Group IIIA of the Periodic Table of Elements and one or more elements of Group VA of the Periodic Table of Elements, wherein the nanocrystal is capable of emitting light having a photoluminescence quantum efficiency of at least about 30% upon excitation. Also disclosed is a nanocrystal including a core comprising a first semiconductor material comprising one or more elements of Group IIIA of the Periodic Table of Elements and one or more elements of Group VA of the Periodic Table of Elements, and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the nanocrystal is capable of emitting light having a photoluminescence quantum efficiency of at least about 30% upon excitation.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: January 15, 2013
    Assignee: QD Vision, Inc.
    Inventors: Christopher R. Clough, Craig Breen, Jonathan S. Steckel, Ebenezer Selwyn Arun Thambaw
  • Patent number: 8259770
    Abstract: Electrophotographic print system, comprising a photosensitive medium, and a laser array being provided with a plurality of laser diodes arranged to emit light onto the photosensitive medium for varying an electrical potential on a surface of the photosensitive medium, and a plurality of heat dissipation diodes, each heat dissipation diode being arranged in proximity to a corresponding laser diode, wherein each laser diode and the corresponding heat dissipation diode are coupled to a common drive circuit and are arranged in opposite current flow directions with respect to each other, so that in use the current flows either through the laser diode or through the heat dissipation diode depending on the current flow direction in the drive circuit.
    Type: Grant
    Filed: October 11, 2009
    Date of Patent: September 4, 2012
    Assignee: Hewlett-Packard Indigo B.V.
    Inventors: Boaz Tagansky, Michael Plotkin, Craig Breen
  • Patent number: 8208824
    Abstract: A correction method for correcting unintended spatial variation in lightness across a physical image produced by a xerographic process, the method comprising producing a test image using the xerographic process, measuring a difference between actual lightness and intended lightness across at least part of the test image, and varying the light source level used subsequently in the xerographic process to correct for the measured unintended difference.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: June 26, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Eyal Shelef, Shlomo Harush, Gregory Braverman, Maya Shalev, Barak Markus, Gidl Amir, Craig Breen, Haim Livne, Michael Plotkin
  • Patent number: 8035675
    Abstract: First delay mechanisms to delay a beam-detect signal by different lengths of time in synchronization with a first clock signal. The beam-detect signal is generated responsive to one or more beams being output towards a rotating polygonal mirror having facets and directed towards a sensor. One or more second delay mechanisms each correspond to one of the beams to delay a second clock signal, resulting in a beam-clock signal to align the beam over successive reflections by the facets. A mechanism determines a delay by which each second delay mechanism is to delay the second clock signal, based on the beam-detect signal as differently delayed by the first delay mechanisms.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: October 11, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Craig Breen, Dan Pritsker