Patents by Inventor Craig M. Carpenter

Craig M. Carpenter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040144315
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Application
    Filed: October 28, 2003
    Publication date: July 29, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Publication number: 20040144310
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Application
    Filed: November 6, 2003
    Publication date: July 29, 2004
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Publication number: 20040134427
    Abstract: Methods for passivating exposed surfaces within an apparatus for depositing thin films on a substrate are disclosed. Interior surfaces of a deposition chamber and conduits in communication therewith are passivated to prevent reactants used in a deposition process and reaction products from adsorbing or chemisorbing to the interior surfaces. The surfaces may be passivated for this purpose by surface treatments, lining, temperature regulation, or combinations thereof. A method for determining a temperature or temperature range at which to maintain a surface to minimize accumulation of reactants and reaction products is also disclosed. A deposition apparatus with passivated surfaces within the deposition chamber and gas flow paths is also disclosed.
    Type: Application
    Filed: January 9, 2003
    Publication date: July 15, 2004
    Inventors: Garo J. Derderian, Gurtej S. Sandhu, Ross S. Dando, Craig M. Carpenter, Philip H. Campbell
  • Publication number: 20040133230
    Abstract: The invention pertains to a system, and related methods, for the percutaneous transluminal delivery and retrieval of a prosthetic occluder through a front-end loader. The prosthetic occluder may be, for example, an intracardiac occluder for a patent foramen ovale. The system includes, in one embodiment, a front-end loader having a beveled distal end. In another embodiment, the system includes a front-end loader having a chamfered rim at the beveled distal end.
    Type: Application
    Filed: September 22, 2003
    Publication date: July 8, 2004
    Inventors: Craig M. Carpenter, Paul A. Garant, Lee A. Core
  • Patent number: 6736708
    Abstract: A plurality of planarizing machines for microelectronic substrate assemblies, and methods of mechanical and chemical-mechanical planarization of microelectronic substrate assemblies are disclosed. The planarizing machines for processing microelectronic substrate assemblies generally include a table, a pad support assembly either positioned on or in the table, and a planarizing medium coupled to the pad support assembly. The pad support assembly includes a fluid container and an elastic membrane coupled to the fluid container. The fluid container generally is a basin either that is either a separate component that is attached to the table, or a depression in the table itself. The fluid container can also be a bladder attached to the table. The membrane generally has a first surface engaging a portion of the fluid container to define a fluid chamber or cavity, and the membrane has a second surface to which the planarizing medium is attached.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 18, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Craig M. Carpenter
  • Publication number: 20040089240
    Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 13, 2004
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
  • Publication number: 20040089233
    Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
  • Publication number: 20040083963
    Abstract: A method and apparatus for delivering precursors to a chemical vapor deposition or atomic layer deposition chamber is provided. The apparatus includes a temperature-controlled vessel containing a precursor. An energy source is used to vaporize the precursor at its surface such that substantially no thermal decomposition of the remaining precursor occurs. The energy source may include a carrier gas, a radio frequency coupling device, or an infrared irradiation source. After the precursor is exposed to the energy source, the vaporized portion of the precursor is transported via a temperature-controlled conduit to a chemical vapor deposition or atomic deposition chamber for further processing.
    Type: Application
    Filed: August 19, 2002
    Publication date: May 6, 2004
    Inventors: Ross S. Dando, Craig M. Carpenter, Allen P. Mardian, Garo J. Derderian, Dan Gealy
  • Publication number: 20040083959
    Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by chamber walls, a substrate holder inside the chamber, and at least one process chemical inlet to the chamber. At least one purge inlet to the chamber is positioned elevationally above the substrate holder and outside a lateral periphery of the substrate holder. The purge inlet is configured to inject at least one purge material into the chamber and past the substrate holder. The purge inlet can be positioned and configured to inject an annular purge material curtain concentric to the substrate holder. A chemical vapor deposition method includes injecting at least one purge material into a deposition chamber and forming a purge curtain from the injected purge material. The purge curtain can extend downward from elevationally above a substrate holder and outside a lateral periphery of the substrate holder. The purge curtain can flow past the substrate holder.
    Type: Application
    Filed: March 13, 2001
    Publication date: May 6, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando
  • Patent number: 6677250
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Publication number: 20040003777
    Abstract: Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 8, 2004
    Inventors: Craig M. Carpenter, Allen P. Mardian, Ross S. Dando, Kimberly R. Tschepen, Garo J. Derderian
  • Publication number: 20040000270
    Abstract: CVD, ALD, and other vapor processes used in processing semiconductor workpieces often require volatilizing a liquid or solid precursor. Certain embodiments of the invention provide improved and/or more consistent volatilization rates by moving a reaction vessel. In one exemplary embodiment, a reaction vessel is rotated about a rotation axis which is disposed at an angle with respect to vertical. This deposits a quantity of the reaction precursor on an interior surface of the vessel's sidewall which is exposed to the headspace as the vessel rotates. Other embodiments employ drivers adapted to move the reaction vessel in other manners, such as a pendulum arm to oscillate the vessel along an arcuate path or a mechanical linkage which moves the vessel along an elliptical path.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 1, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando, Dan Gealy, Garo J. Derderian, Allen P. Mardian
  • Publication number: 20030221616
    Abstract: A pressure-regulating device for use with a vapor reaction chamber, and methods of its use, are disclosed. In one embodiment according to the invention, the device comprises a magnetically-actuatable valve having an aperture, a plug containing a plug magnet within the valve, a magnet disposed around the valve and magnetically associated with the plug magnet, and an actuator associated with the magnet. The actuator moves the magnet to magnetically bias the plug magnet thereby moving the plug into and out of sealing engagement with the aperture and regulating pressure within the reaction chamber. Plug movement is achieved without interconnecting mechanical parts disposed through the body of the valve that provide surfaces on which adduct, from depositing vaporous by-product material, can accumulate. Since magnetic interaction moves the plug rather than mechanical parts attached to the valve body, build-up of adduct on the internal surfaces of the valve is reduced.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 4, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Randy W. Mercil, Philip H. Campbell
  • Publication number: 20030219528
    Abstract: An apparatus for depositing materials onto a micro-device workpiece includes a gas source system configured to provide a first precursor, a second precursor, and a purge gas. The apparatus can also include a valve assembly coupled to the gas source system. The valve assembly is configured to control a flow of the first precursor, a flow the second precursor, and a flow of the purge gas. Another component of the apparatus is a reaction chamber including an inlet coupled to the valve assembly, a workpiece holder in the reaction chamber, and an outlet downstream from the workpiece holder. The apparatus also includes a monitoring system and a controller. The monitoring system comprises a radiation source that directs a selected radiation through the reaction chamber and a detector that senses a parameter of the radiation directed through the reaction chamber. The controller is operatively coupled to the monitoring system and the valve assembly.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 27, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian
  • Publication number: 20030215569
    Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. A substrate holder is received within the chamber. At least one process chemical inlet to the deposition chamber is included. At least one of the chamber sidewall and chamber base wall includes a chamber surface having a plurality of purge gas inlets to the chamber therein. The purge gas inlets are separate from the at least one process chemical inlet. A purge gas inlet passageway is provided in fluid communication with the purge gas inlets. Further implementations, including deposition method implementations, are contemplated.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Inventors: Allen P. Mardian, Philip H. Campbell, Craig M. Carpenter, Randy W. Mercil, Sujit Sharan
  • Publication number: 20030203109
    Abstract: A chemical vapor deposition chamber has a vacuum exhaust line extending therefrom. Material is deposited over a first plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line. At least a portion of the vacuum exhaust line is isolated from the deposition chamber. While isolating, a cleaning fluid is flowed to the vacuum exhaust line effective to at least reduce thickness of the effluent product over the internal walls within the vacuum exhaust line from what it was prior to initiating said flowing. After said flowing, the portion of the vacuum exhaust line and the deposition chamber are provided in fluid communication with one another and material is deposited over a second plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 30, 2003
    Inventors: Ross S. Dando, Philip H. Campbell, Craig M. Carpenter, Allen P. Merdian
  • Publication number: 20030200926
    Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 30, 2003
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
  • Publication number: 20030194508
    Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
  • Publication number: 20030192477
    Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 16, 2003
    Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
  • Publication number: 20030194829
    Abstract: A method includes removing at least a piece of a deposition chamber liner from a deposition chamber by passing it through a passageway to the deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. A replacement for the removed deposition chamber liner piece is provided into the chamber by passing the replacement through said passageway. A liner apparatus includes a plurality of pieces which when assembled within a selected semiconductor substrate deposition processor chamber are configured to restrict at least a majority portion of all internal wall surfaces which define said semiconductor substrate deposition processor chamber from exposure to deposition material within the chamber. At least some of the pieces are sized for passing completely through a substrate passageway to the chamber through which semiconductor substrates pass into and out of the chamber for deposition processing.
    Type: Application
    Filed: January 23, 2003
    Publication date: October 16, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu