Patents by Inventor Curtis Davis

Curtis Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9869762
    Abstract: A radar sensing system for a vehicle includes a plurality of transmitters, a plurality of receivers, and a plurality of receive and transmit antennas. The plurality of transmitters are configured for installation and use on a vehicle, and operable to transmit radio signals. The plurality of receivers are configured for installation and use on the vehicle, and operable to receive radio signals which include transmitted radio signals reflected from objects in the environment. The plurality of receive antennas and the plurality of transmit antennas are arranged in a selected MIMO configuration to provide a quantity of receive antennas and transmit antennas for a desired level of two-dimensional angle capability for a given board size.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 16, 2018
    Assignee: UHNDER, INC.
    Inventors: Stephen W. Alland, Jean P. Bordes, Curtis Davis, Murtaza Ali
  • Patent number: 9846228
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on the environment, the current information stored in the radar system, and/or external information provided to the radar system. The system allows improved resolution of range, Doppler and/or angle depending on the desired objective.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 19, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 9829567
    Abstract: A radar sensing system includes at least one transmitter, at least one receiver and a processor. The at least one transmitter transmits a power shaped radio signal. The at least one receiver receives radio signal that includes the transmitted radio signal reflected from targets in the environment. The received radio signal is provided to the processor. The processor samples the received radio signal during a plurality of time intervals to produce a sampled stream. The different time intervals of the plurality of time intervals will contain different signal levels of radio signals reflected from the targets. The processor also selects a particular time interval of the plurality of time intervals that is free of samples of radio signals reflected off of the targets that are closer than a first threshold distance from an equipped vehicle.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 28, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Jean P. Bordes, Monier Maher, Wayne Stark, Raghunath K. Rao
  • Publication number: 20170336495
    Abstract: A radar sensing system for a vehicle includes transmit and receive pipelines. The transmit pipeline includes transmitters able to transmit radio signals. The receive pipeline includes receivers able to receive radio signals. The received radio signals include transmitted radio signals that are reflected from an object. The transmitters phase modulate the radio signals before transmission, as defined by a first binary sequence. The receive pipeline comprises at least one analog to digital converter (ADC) for sampling the received radio signals. The first binary sequence is defined by least significant bit (LSB) outputs from the at least one ADC.
    Type: Application
    Filed: July 28, 2017
    Publication date: November 23, 2017
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, John Lovberg
  • Publication number: 20170309997
    Abstract: A radar sensing system for a vehicle, the radar sensing system including a transmitter and a receiver. The transmitter is configured to transmit a radio signal. The receiver is configured to receive the transmitted radio signal reflected from objects in the environment. The transmitter includes an antenna and is configured to transmit the radio signal via the antenna. The antenna includes a plurality of linear arrays of patch radiators. An arrangement of the linear arrays of patch radiators is selected to form a desired shaped antenna pattern having a desired mainlobe shape and desired shoulder shapes to cover selected sensing zones without nulls or holes in the coverage.
    Type: Application
    Filed: May 18, 2017
    Publication date: October 26, 2017
    Inventors: Stephen W. Alland, Curtis Davis, Marius Goldenberg
  • Publication number: 20170310758
    Abstract: A shared radar and communication system for a vehicle includes capabilities for radar detection and communication with vehicles equipped with similar systems. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar transmits a signal modulated with spread codes that are information bits. A receiver discriminates the signals sent from own transmitters and multiple reflections to detect objects of interest. In addition, the receiver discriminates signals transmitted from different systems on other vehicles. This requires the receiving system to have knowledge of the codes transmitted by the other vehicle. The receiving system determines the information bits sent by the other vehicle. If multiple radar systems on multiple vehicles use different sets of codes (but known to each other), the multiple systems can create a communication infra-structure in addition to radar detection and imaging.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
  • Publication number: 20170307728
    Abstract: A radar system for a vehicle includes a transmitter and a receiver. The transmitter transmits an amplified and frequency modulated radio signal. Each transmitter comprises a frequency generator, a code generator, a modulator, a constant-envelope power amplifier, and an antenna. The frequency generator generates the radio signal with a desired center frequency. The code generator generates a sequence of chips at a selected chiprate. A modulation interval between successive chips is a reciprocal of the chiprate. The modulator frequency modulates the radio signal using shaped frequency pulses. The shaped frequency pulses correspond to a first signal, the frequency of which deviates from the desired center frequency during each of the modulation intervals according to a selected pulse shape. The selected pulse shape is determined by the generated sequence of chips. The constant-envelope power amplifier amplifies the frequency modulated radio signal at a desired transmit power level.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventors: Aria Eshraghi, Curtis Davis, Murtaza Ali, Paul Dent
  • Publication number: 20170307753
    Abstract: A radar sensing system for a vehicle includes a transmitter configured for installation and use on a vehicle and able to transmit radio signals. The radar sensing system also includes a receiver and a processor. The receiver is configured for installation and use on the vehicle and able to receive radio signals. The received radio signals include transmitted radio signals that are reflected from objects in the environment. The received radio signals further include radio signals transmitted by at least one other radar system. The processor samples the received radio signals to produce a sampled stream. The processor is configured to control an adaptive filter. Responsive to the processor, the adaptive filter is configured to filter the sampled stream, such that the radio signals transmitted by the at least one other radar system are removed from the received radio signals.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventors: Fred Harris, David Trager, Curtis Davis, Raghunath K. Rao
  • Publication number: 20170307729
    Abstract: A digital FMCW radar is described that simultaneously transmits and receives digitally frequency modulated signals using multiple transmitters and multiple receivers and associated antennas. Several sources of nearby spillover from transmitters to receivers that would otherwise degrade receiver performance are subtracted by a cancellation system in the analog radio frequency domain that adaptively synthesizes an analog subtraction signal based on residual spillover measured by a correlator operating in the receivers' digital signal processing domains and based on knowledge of the transmitted waveforms. The first adaptive cancellation system achieves a sufficient reduction of transmit-receive spillover to avoid receiver saturation or other non-linear effects, but is then added back in to the signal path in the digital domain after analog-to-digital conversion so that spillover cancellation can also operate in the digital signal processing domain to remove deleterious spillover components.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Aria Eshraghi, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Murtaza Ali, Paul W. Dent
  • Patent number: 9791564
    Abstract: A radar sensing system for a vehicle includes a transmitter configured for installation and use on a vehicle and able to transmit radio signals. The radar sensing system also includes a receiver and a processor. The receiver is configured for installation and use on the vehicle and able to receive radio signals. The received radio signals include transmitted radio signals that are reflected from objects in the environment. The received radio signals further include radio signals transmitted by at least one other radar system. The processor samples the received radio signals to produce a sampled stream. The processor is configured to control an adaptive filter. Responsive to the processor, the adaptive filter is configured to filter the sampled stream, such that the radio signals transmitted by the at least one other radar system are removed from the received radio signals.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: October 17, 2017
    Assignee: UHNDER, INC.
    Inventors: Fred Harris, David Trager, Curtis Davis, Raghunath K. Rao
  • Patent number: 9791551
    Abstract: A digital FMCW radar is described that simultaneously transmits and receives digitally frequency modulated signals using multiple transmitters and multiple receivers and associated antennas. Several sources of nearby spillover from transmitters to receivers that would otherwise degrade receiver performance are subtracted by a cancellation system in the analog radio frequency domain that adaptively synthesizes an analog subtraction signal based on residual spillover measured by a correlator operating in the receivers' digital signal processing domains and based on knowledge of the transmitted waveforms. The first adaptive cancellation system achieves a sufficient reduction of transmit-receive spillover to avoid receiver saturation or other non-linear effects, but is then added back in to the signal path in the digital domain after analog-to-digital conversion so that spillover cancellation can also operate in the digital signal processing domain to remove deleterious spillover components.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: October 17, 2017
    Assignee: UHNDER, INC.
    Inventors: Aria Eshraghi, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Murtaza Ali, Paul W. Dent
  • Publication number: 20170293027
    Abstract: A radar system has different modes of operation. In one mode the radar operates as a single-input, multiple-output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter on a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a MIMO radar system utilizing all the antennas at a time. Interference cancellation of the non-ideal cross correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Publication number: 20170293025
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on the environment, the current information stored in the radar system, and/or external information provided to the radar system. The system allows improved resolution of range, Doppler and/or angle depending on the desired objective.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 12, 2017
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 9772397
    Abstract: A radar sensing system for a vehicle includes at least one transmitter, at least one receiver, and a processor. The at least one transmitter is operable to transmit a radio signal at one of a plurality of carrier frequencies. The at least one receiver is operable to receive a radio signal which includes a reflected radio signal that is the transmitted radio signal reflected from an object. The at least one receiver is operable to receive an interfering radio signal transmitted by a transmitter of another radar sensing system. The processor is operable to control the at least one transmitter to selectively transmit radio signals on one of the plurality of carrier frequencies. The processor is further operable to at least one of select a carrier frequency with reduced interference and avoid interference from the other radar sensing system.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 26, 2017
    Assignee: UHNDER, INC.
    Inventors: Jean P. Bordes, Curtis Davis, Wayne E. Stark, Otto A. Schmid, Raghunath K. Rao
  • Patent number: 9753121
    Abstract: A radar sensing system includes at least one transmitter, at least one receiver and a processor. The at least one transmitter transmits a power shaped RF signal. The transmitted RF signal decreases in power over time. The at least one receiver receives a reflected RF signal. The reflected RF signal is the transmitted RF signal reflected from targets in the environment. The reflected RF signal is down-converted and the result provided to the processor. The processor samples the down-converted reflected RF signal during a plurality of time intervals to produce a sampled stream. The different time intervals of the plurality of time intervals will contain different signal levels of RF signals reflected from the targets. The processor also selects samples in the sampled stream over a selected time interval of the plurality of time intervals that is free of RF signals reflected off of near targets.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 5, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Jean P. Bordes, Monier Maher, Wayne Stark, Raghunath K. Rao
  • Patent number: 9720073
    Abstract: A radar sensing system for a vehicle includes transmit and receive pipelines. The transmit pipeline includes transmitters able to transmit radio signals. The receive pipeline includes receivers able to receive signals. The received signals are transmitted signals that are reflected from an object. The transmit pipeline phase modulates the signals before transmission, as defined by a first binary sequence. The receive pipeline comprises an analog to digital converter (ADC) for sampling the received signals. The transmit pipeline includes a pseudorandom binary sequence (PRBS) generator for outputting a second binary sequence of bits with an equal probability of 1 and 0. The first binary sequence is defined by least significant bit (LSB) outputs from the ADC and the second binary sequence of bits. The first binary sequence comprises a truly random unbiased sequence of bits with an equal probability of 1 and 0.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: August 1, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, John Lovberg
  • Patent number: 9689967
    Abstract: A radar system has different modes of operation. In one mode the radar operates as a single-input, multiple-output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter on a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a MIMO radar system utilizing all the antennas at a time. Interference cancellation of the non-ideal cross correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 27, 2017
    Assignee: UHNDER, INC.
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Patent number: 9575160
    Abstract: A radar sensing system for a vehicle includes transmit and receive pipelines. The transmit pipeline includes transmitters able to transmit radio signals. The receive pipeline includes receivers able to receive signals. The received signals are transmitted signals that are reflected from an object. The transmit pipeline phase modulates the signals before transmission, as defined by a first binary sequence. The receive pipeline comprises an analog to digital converter (ADC) for sampling the received signals. The transmit pipeline includes a pseudorandom binary sequence (PRBS) generator for outputting a second binary sequence of bits with an equal probability of 1 and 0. The first binary sequence is defined by least significant bit (LSB) outputs from the ADC and the second binary sequence of bits. The first binary sequence comprises a truly random unbiased sequence of bits with an equal probability of 1 and 0.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: February 21, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, John Lovberg
  • Patent number: 9300104
    Abstract: An electrical contact insertion tool includes an insertion assembly, a handle assembly slidably coupled to the insertion assembly such that the insertion assembly is translatable between a first position with respect to the handle assembly and a second position with respect to the handle assembly, and a retention mechanism selectively movable between a first configuration and a second configuration. The handle assembly is configured to retain the insertion assembly in the first position with a first predetermined amount of force when the insertion assembly is in the first position. The retention mechanism is configured to retain an object between the retention mechanism and the insertion assembly with a second predetermined amount of force when the retention mechanism is in the second configuration.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: March 29, 2016
    Assignee: The Boeing Company
    Inventors: Luis J. Lazaro, Jr., Wesley M. Johnson, Curtis A. Davis
  • Patent number: 8936300
    Abstract: A cab assembly is disclosed for use with a machine having a frame. The cab assembly may include an operator cab with a first side and a second side, a plurality of cab mounts connecting the operator cab to the frame, and a hydraulic cylinder connected at one end to the operator cab and at an opposing end to the frame. The plurality of cab mounts may be selectively disconnected from the operator cab to allow the hydraulic cylinder to tilt the operator cab toward the first side or the second side of the operator cab.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 20, 2015
    Assignee: Progress Rail Services Corp
    Inventors: Curtis Davis, Gary Gibson