Patents by Inventor Cyril de la Cropte de Chanterac

Cyril de la Cropte de Chanterac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160077136
    Abstract: Embodiments of a computing system that may monitor energy usage are disclosed. The embodiments may provide a low overhead method for determining energy usage of a given application or process. Circuitry is configured to determine a respective energy for each of the plurality of operations and sum each respective energy for at least some of the plurality of operations to generate a normalized total. The circuitry may be further configured to scale the normalized total to generate an energy value, and store the energy value in a register. System software may then read the energy value from the register and determine an energy usage for at least one application dependent upon the energy value.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 17, 2016
    Inventors: Daniel U. Becker, Cyril de la Cropte de Chanterac
  • Publication number: 20160064940
    Abstract: Examples of the disclosure are directed to methods of managing power of various modules of an electronic device to prevent the voltage of the battery from falling to an undervoltage lockout (UVLO) threshold. In some examples, software operating on the electronic device or an associated electronic device (e.g., a paired electronic device) may assign power budgets to one or more modules, thereby preventing each module from drawing its maximum current capacity and causing the battery's voltage level to fall to the UVLO threshold. In some examples, a pre-UVLO threshold (i.e., a threshold higher than the UVLO threshold) may be used to modify the states of one or more modules to save power as the voltage of the battery approaches the UVLO threshold, but before the device must be fully powered off.
    Type: Application
    Filed: July 29, 2015
    Publication date: March 3, 2016
    Inventors: Cyril DE LA CROPTE DE CHANTERAC, David A. HARDELL, Matthew L. SEMERSKY, Yehonatan PEREZ
  • Publication number: 20160057707
    Abstract: Circuits, methods, and apparatus that react to brownout or near brownout conditions and mitigate complications that may result. Examples may turn off one or more circuits, such as a Wi-Fi transceiver when a brownout condition is reached or neared. Other examples may provide circuits, methods, and apparatus that proactively avoid brownout conditions. These examples may detect that a brownout condition may occur and take steps, such as Wi-Fi traffic shaping, to avoid them. Still further examples may react to brownout or near brownout conditions one or more times, then preemptively act to avoid further brownout conditions.
    Type: Application
    Filed: May 30, 2015
    Publication date: February 25, 2016
    Applicant: APPLE INC.
    Inventors: Matthew L. Semersky, David A. Hardell, Cyril de la Cropte de Chanterac, Yehonantan Perez
  • Publication number: 20160054773
    Abstract: A method and apparatus for providing telemetry for use in power control functions is disclosed. A system includes an integrated circuit (IC) having a first power management circuit. The IC also includes a number of functional circuit blocks within a number of different power domains. A second power management circuit is implemented external to the IC and includes a number of voltage regulators. Each of the power domains is coupled to receive power from one voltage regulators. During operation, the first power management circuit may send commands requesting the change of one or more voltages provided to the IC. The second power management circuit may respond by performing the requested voltage change(s), and may also provide telemetry data to the first power management circuit. The second power management circuit may also provide telemetry data responsive to receiving a no operation command from the first power management circuit.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Manu Gulati, Parin Patel, Keith Cox, Derek Iwamoto, Cyril de la Cropte de Chanterac, Christopher J. Young
  • Patent number: 9261939
    Abstract: In an embodiment, a system includes a memory controller that includes a memory cache and a display controller configured to control a display. The system may be configured to detect that the images being displayed are essentially static, and may be configured to cause the display controller to request allocation in the memory cache for source frame buffer data. In some embodiments, the system may also alter power management configuration in the memory cache to prevent the memory cache from shutting down or reducing its effective size during the idle screen case, so that the frame buffer data may remain cached. During times that the display is dynamically changing, the frame buffer data may not be cached in the memory cache and the power management configuration may permit the shutting down/size reduction in the memory cache.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: February 16, 2016
    Assignee: Apple Inc.
    Inventors: Sukalpa Biswas, Shinye Shiu, Cyril de la Cropte de Chanterac, Manu Gulati, Pulkit Desai, Rong Zhang Hu
  • Publication number: 20160041606
    Abstract: Examples of the disclosure are directed to a method of, after hitting a UVLO threshold, rebooting an electronic device in a low power mode having a lower UVLO threshold, such that the device can continue to be used past the first UVLO threshold. For example, in a high power mode, the device may be capable of a number of functionalities of a modern portable electronic device, such as network access, the ability to run applications, Bluetooth connections, etc. In a low power mode, the device may only be able to check and display a current time, play an alarm sound at a predefined time, perform near field communication (NFC) transactions/payments, among other possibilities described herein. The limited functionality and reduced usage of peripherals in the low power mode may prevent the battery from experiencing peaks in current level that may be problematic at relatively low levels of voltage.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 11, 2016
    Inventors: Jonathan J. ANDREWS, Cyril DE LA CROPTE DE CHANTERAC, Eugene KIM
  • Publication number: 20150348223
    Abstract: The embodiments set forth a technique for targeted scaling of the voltage and/or frequency of hardware components included in a mobile computing device. One embodiment involves independently analyzing the individual frame rates of each animation within a user interface (UI) of a mobile computing device instead of analyzing the frame rate of the UI as a whole. This can involve establishing, for each animation being displayed within the UI, a corresponding performance control pipeline that generates a control signal for scaling a performance mode of the hardware components (e.g., a Central Processing Unit (CPU)) included in the mobile computing device. In this manner, the control signals generated by the performance control pipelines can be aggregated to produce a control signal that causes a power management component to scale the performance mode(s) of the hardware components.
    Type: Application
    Filed: September 17, 2014
    Publication date: December 3, 2015
    Inventors: John G. DORSEY, Keith COX, Cyril de la CROPTE de CHANTERAC, Karl D. VULKAN
  • Publication number: 20150253826
    Abstract: A method and apparatus to alter acoustic noise induced by processor performance changes is disclosed. In one embodiment, a processor having one or more processor cores may execute instructions of one or more applications. The performance level (e.g., supply voltage and/or clock frequency) may be adjusted in accordance with workload demands. One or more of the applications executing on a core of the processor may exhibit periodic behavior, thereby causing periodic changes (e.g., increases) in the performance level. Performance monitoring may be conducted and may detect the periodic changes in the workload of the application. Responsive to the detection of the periodic changes, a power management unit may subsequently cause future performance level changes associated with the application to occur aperiodically.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 10, 2015
    Applicant: Apple Inc.
    Inventors: Cyril de la Cropte de Chanterac, Kieran Poulain
  • Publication number: 20150046324
    Abstract: This application relates to systems, methods, and apparatus for using a computing device to perform payment transactions while the computing device is operating in a low power wallet mode during a low battery state of the computing device. During a low power wallet mode, various subsystems are prevented from receiving current from a battery of the computing device, while a near field communication (NFC) system of the computing device is provided with an operating current for detecting target systems. A target system and the NFC system can communicate during the low power wallet mode of the computing device, thereby allowing a user of the computing device to conduct payment transactions when the computing device is in a low power wallet mode. Such payment transactions can be useful if the user is ever stranded without enough power to fully operate the computing device and needs to pay for transportation.
    Type: Application
    Filed: September 29, 2014
    Publication date: February 12, 2015
    Inventors: Cyril de la Cropte de Chanterac, Joseph Hakim, Leland W. Lew, Hue Duc Tran
  • Publication number: 20140337649
    Abstract: In an embodiment, a system includes a memory controller that includes a memory cache and a display controller configured to control a display. The system may be configured to detect that the images being displayed are essentially static, and may be configured to cause the display controller to request allocation in the memory cache for source frame buffer data. In some embodiments, the system may also alter power management configuration in the memory cache to prevent the memory cache from shutting down or reducing its effective size during the idle screen case, so that the frame buffer data may remain cached. During times that the display is dynamically changing, the frame buffer data may not be cached in the memory cache and the power management configuration may permit the shutting down/size reduction in the memory cache.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
    Applicant: Apple Inc.
    Inventors: Sukalpa Biswas, Shinye Shiu, Cyril de la Cropte de Chanterac, Manu Gulati, Pulkit Desai, Rong Zhang Hu