Patents by Inventor Daizo Oda

Daizo Oda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200013747
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. The bonding longevity of a ball bonded part can increase in a high-temperature and high-humidity environment, improving the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Tomohiro UNO
  • Publication number: 20200013748
    Abstract: There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Takashi YAMADA, Daizo ODA, Ryo OISHI, Tomohiro UNO
  • Patent number: 10525555
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: January 7, 2020
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10529683
    Abstract: A bonding wire for a semiconductor device, which is suitable for on-vehicle devices bonding wire, has excellent capillary wear resistance and surface flaw resistance while ensuring high bonding reliability and further satisfies overall performance including ball formability and wedge bondability, the bonding wire including: a Cu alloy core material; a Pd coating layer formed on a surface of the Cu alloy core material; and a Cu surface layer formed on a surface of the Pd coating layer, in which the bonding wire for semiconductor device contains Ni, a concentration of the Ni in the bonding wire is 0.1 to 1.2 wt. %, the Pd coating layer is 0.015 to 0.150 ?m in thickness, and the Cu surface layer is 0.0005 to 0.0070 ?m in thickness.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: January 7, 2020
    Assignees: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD., NIPPON MICROMETAL CORPORATION
    Inventors: Tetsuya Oyamada, Tomohiro Uno, Daizo Oda, Takashi Yamada
  • Patent number: 10497663
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. The bonding longevity of a ball bonded part can increase in a high-temperature and high-humidity environment, improving the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: December 3, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Tomohiro Uno
  • Patent number: 10468370
    Abstract: There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: November 5, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Ryo Oishi, Tomohiro Uno
  • Patent number: 10461055
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. The bonding longevity of a ball bonded part can increase in a high-temperature and high-humidity environment, improving the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 29, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Tomohiro Uno
  • Publication number: 20190326246
    Abstract: The present invention provides a bonding wire for a semiconductor device suitable for cutting-edge high-density LSIs and on-vehicle LSIs by improving the formation rate of Cu—Al IMC in ball bonds. A bonding wire for a semiconductor device contains Pt of 0.1 mass % to 1.3 mass %, at least one dopant selected from a first dopant group consisting of In, Ga, and Ge, for a total of 0.05 mass % to 1.25 mass %, and a balance being made up of Cu and incidental impurities.
    Type: Application
    Filed: February 14, 2018
    Publication date: October 24, 2019
    Applicants: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD., NIPPON MICROMETAL CORPORATION
    Inventors: Tetsuya OYAMADA, Tomohiro UNO, Takashi YAMADA, Daizo ODA, Motoki ETO
  • Patent number: 10414002
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: September 17, 2019
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10381320
    Abstract: The present invention provides a bonding wire which can satisfy bonding reliability, spring performance, and chip damage performance required in high-density packaging. A bonding wire contains one or more of In, Ga, and Cd for a total of 0.05 to 5 at %, and a balance being made up of Ag and incidental impurities.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: August 13, 2019
    Assignees: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD., NIPPON MICROMETAL CORPORATION
    Inventors: Tetsuya Oyamada, Tomohiro Uno, Hiroyuki Deai, Daizo Oda
  • Publication number: 20190164927
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. The bonding longevity of a ball bonded part can increase in a high-temperature and high-humidity environment, improving the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 30, 2019
    Applicants: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Tomohiro UNO
  • Patent number: 10236272
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. The bonding longevity of a ball bonded part can increase in a high-temperature and high-humidity environment, improving the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: March 19, 2019
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Tomohiro Uno
  • Publication number: 20180374815
    Abstract: A bonding wire for a semiconductor device, which is suitable for on-vehicle devices bonding wire, has excellent capillary wear resistance and surface flaw resistance while ensuring high bonding reliability and further satisfies overall performance including ball formability and wedge bondability, the bonding wire including: a Cu alloy core material; a Pd coating layer formed on a surface of the Cu alloy core material; and a Cu surface layer formed on a surface of the Pd coating layer, in which the bonding wire for semiconductor device contains Ni, a concentration of the Ni in the bonding wire is 0.1 to 1.2 wt. %, the Pd coating layer is 0.015 to 0.150 ?m in thickness, and the Cu surface layer is 0.0005 to 0.0070 ?m in thickness.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 27, 2018
    Inventors: Tetsuya OYAMADA, Tomohiro UNO, Daizo ODA, Takashi YAMADA
  • Publication number: 20180374816
    Abstract: The present invention has as its object the provision of a bonding wire for semiconductor devices mainly comprised of Ag, in which bonding wire for semiconductor devices, the bond reliability demanded for high density mounting is secured and simultaneously a sufficient, stable bond strength is realized at a ball bond, no neck damage occurs even in a low loop, the leaning characteristic is excellent, and the FAB shape is excellent. To solve this problem, the bonding wire for semiconductor devices according to the present invention contains one or more of Be, B, P, Ca, Y, La, and Ce in a total of 0.031 at % to obtain a 0.180 at %, further contains one or more of In, Ga, and Cd in a total of 0.05 at % to 5.00 at %, and has a balance of Ag and unavoidable impurities.
    Type: Application
    Filed: September 23, 2016
    Publication date: December 27, 2018
    Inventors: Daizo ODA, Takumi OHKABE, Teruo HAIBARA, Takashi YAMADA, Tetsuya OYAMADA, Tomohiro UNO
  • Patent number: 10137534
    Abstract: A bonding wire includes a Cu alloy core material, and a Pd coating layer formed on the Cu alloy core material. The bonding wire contains at least one element selected from Ni, Zn, Rh, In, Ir, and Pt. A concentration of the elements in total relative to the entire wire is 0.03% by mass or more and 2% by mass or less. When measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, a crystal orientation <100> angled at 15 degrees or less to a wire axis direction has a proportion of 50% or more among crystal orientations in the wire axis direction. An average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire is 0.9 ?m or more and 1.3 ?m or less.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 27, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Takashi Yamada, Daizo Oda, Teruo Haibara, Ryo Oishi, Kazuyuki Saito, Tomohiro Uno
  • Patent number: 10121758
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 6, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Daizo Oda, Motoki Eto, Kazuyuki Saito, Teruo Haibara, Ryo Oishi, Takashi Yamada, Tomohiro Uno
  • Patent number: 10032741
    Abstract: There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains In of 0.011 to 1.2% by mass and has the Pd coating layer of a thickness of 0.015 to 0.150 ?m. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material contains one or more elements of Pt, Pd, Rh and Ni in an amount, for each element, of 0.05 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 175° C. or more.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: July 24, 2018
    Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Daizo Oda, Motoki Eto, Takashi Yamada, Teruo Haibara, Ryo Oishi, Tomohiro Uno, Tetsuya Oyamada
  • Publication number: 20180133843
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation <100> angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 ?m provides a strength ratio of 1.6 or less.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20180130763
    Abstract: A bonding wire for a semiconductor device, characterized in that the bonding wire includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, the bonding wire contains an element that provides bonding reliability in a high-temperature environment, and a strength ratio defined by the following Equation (1) is 1.1 to 1.6: Strength ratio=ultimate strength/0.2% offset yield strength.
    Type: Application
    Filed: June 14, 2016
    Publication date: May 10, 2018
    Inventors: Takashi YAMADA, Daizo ODA, Teruo HAIBARA, Ryo OISHI, Kazuyuki SAITO, Tomohiro UNO
  • Publication number: 20180122765
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Daizo ODA, Motoki ETO, Kazuyuki SAITO, Teruo HAIBARA, Ryo OISHI, Takashi YAMADA, Tomohiro UNO