Patents by Inventor Dale Buermann

Dale Buermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200063201
    Abstract: An apparatus can include a vessel, a reference surface, a preload, a scan actuator, and a transmitter. The reference surface can form a structural loop with a detector. The preload can be configured to urge the vessel to contact an area on the reference surface. The scan actuator can be configured to slide the vessel along the reference surface in a scan dimension. The transmitter can be configured to direct signal from the vessel to a detector and/or direct energy from an energy source to the vessel, when the vessel is urged by the preload to contact the reference surface.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Dale Buermann, Michael John Erickstad, Rebecca McGinley, Alex Nemiroski, Harry Scott Rapoport, Arnold Oliphant
  • Patent number: 10549281
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: February 4, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Patent number: 10501796
    Abstract: An apparatus can include a vessel, a reference surface, a preload, a scan actuator, and a transmitter. The reference surface can form a structural loop with a detector. The preload can be configured to urge the vessel to contact an area on the reference surface. The scan actuator can be configured to slide the vessel along the reference surface in a scan dimension. The transmitter can be configured to direct signal from the vessel to a detector and/or direct energy from an energy source to the vessel, when the vessel is urged by the preload to contact the reference surface.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: December 10, 2019
    Inventors: Dale Buermann, Michael John Erickstad, Rebecca McGinley, Alex Nemiroski, Harry Scott Rapoport, Arnold Oliphant
  • Patent number: 10427155
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: October 1, 2019
    Assignee: Illumina, Inc.
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Publication number: 20190283024
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Publication number: 20190055598
    Abstract: An apparatus can include a vessel, a reference surface, a preload, a scan actuator, and a transmitter. The reference surface can form a structural loop with a detector. The preload can be configured to urge the vessel to contact an area on the reference surface. The scan actuator can be configured to slide the vessel along the reference surface in a scan dimension. The transmitter can be configured to direct signal from the vessel to a detector and/or direct energy from an energy source to the vessel, when the vessel is urged by the preload to contact the reference surface.
    Type: Application
    Filed: September 25, 2018
    Publication date: February 21, 2019
    Inventors: Dale Buermann, Michael John Erickstad, Rebecca McGinley, Alex Nemiroski, Harry Scott Rapoport, Arnold Oliphant
  • Publication number: 20190055596
    Abstract: An apparatus can include a vessel, a reference surface, a preload, a scan actuator, and a transmitter. The reference surface can form a structural loop with a detector. The preload can be configured to urge the vessel to contact an area on the reference surface. The scan actuator can be configured to slide the vessel along the reference surface in a scan dimension. The transmitter can be configured to direct signal from the vessel to a detector and/or direct energy from an energy source to the vessel, when the vessel is urged by the preload to contact the reference surface.
    Type: Application
    Filed: August 15, 2018
    Publication date: February 21, 2019
    Inventors: Dale Buermann, Michael John Erickstad, Rebecca McGinley, Alex Nemiroski, Harry Scott Rapoport, Arnold Oliphant
  • Patent number: 9782770
    Abstract: System configured to conduct designated reactions for biological or chemical analysis. The system includes a liquid-exchange assembly comprising an assay reservoir for holding a first liquid, a receiving cavity for holding a second liquid that is immiscible with respect to the first liquid, and an exchange port fluidically connecting the assay reservoir and the receiving cavity. The system also includes a pressure activator that is operably coupled to the assay reservoir of the liquid-exchange assembly. The pressure activator is configured to repeatedly exchange the first and second liquids by (a) flowing a designated volume of the first liquid through the exchange port into the receiving cavity and (b) flowing a designated volume of the second liquid through the exchange port into the assay reservoir. The system also includes a fluidic system that is in flow communication with the liquid-exchange assembly.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 10, 2017
    Assignee: Illumina, Inc.
    Inventors: Dale Buermann, Sebastian Bohm, Alexander Hsiao
  • Publication number: 20170246635
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Application
    Filed: May 12, 2017
    Publication date: August 31, 2017
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Publication number: 20170189904
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Application
    Filed: May 27, 2015
    Publication date: July 6, 2017
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Publication number: 20170144155
    Abstract: Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 25, 2017
    Inventors: Sebastian Bohm, Alex Aravanis, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Hai Quang Tran, Majid Aghababazadeh, M. Shane Bowen, Boyan Boyanov, Dale Buermann
  • Patent number: 9650669
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 16, 2017
    Assignee: Illumina, Inc.
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Patent number: 9365898
    Abstract: A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: June 14, 2016
    Assignee: ILLUMINA, INC.
    Inventors: Wenyi Feng, Jason Bryant, Dale Buermann
  • Patent number: 9347440
    Abstract: A flow cell for use in a microfluidic detection system. The flow cell includes a flow cell body having a channel that extends along the flow cell body. The flow cell body has a substrate material that extends along the channel and that is transparent to at least one of excitation light or light emissions. The channel has a functionalized channel surface that includes reactive groups configured to attach to molecules for biochemical analysis. The flow cell also includes fluidic inlet and fluidic outlet ports provided on the flow cell body and an electroosmotic (EO) pump held within the flow cell body in fluid communication with the channel. The EO pump is operable to induce flow of a solution from the inlet port to the outlet port and along the functionalized channel surface.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 24, 2016
    Assignee: Illumina, Inc.
    Inventors: Michal Lebl, Dale Buermann, Mark T. Reed, David L. Heiner, Alexander Triener
  • Publication number: 20160002718
    Abstract: A system including a reaction valve having a mating side and a valve inlet. The reaction valve includes a sample chamber, and the valve inlet is in fluid communication with the sample chamber. The system also has a manifold having an engagement surface. The manifold may include first and second manifold ports at the engagement surface. The engagement surface and the mating side of the reaction valve may be positioned adjacent to each other along an interface. The system may also include a positioning assembly that is operatively coupled to at least one of the reaction valve or the manifold. The positioning assembly is configured to move at least one of the reaction valve or the manifold along the interface to fluidly disconnect the valve inlet from the first manifold port and to fluidly connect the valve inlet to the second manifold port.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 7, 2016
    Applicant: IIIumina, Inc.
    Inventors: Dale Buermann, Sebastian Bohm
  • Publication number: 20150352544
    Abstract: System configured to conduct designated reactions for biological or chemical analysis. The system includes a liquid-exchange assembly comprising an assay reservoir for holding a first liquid, a receiving cavity for holding a second liquid that is immiscible with respect to the first liquid, and an exchange port fluidically connecting the assay reservoir and the receiving cavity. The system also includes a pressure activator that is operably coupled to the assay reservoir of the liquid-exchange assembly. The pressure activator is configured to repeatedly exchange the first and second liquids by (a) flowing a designated volume of the first liquid through the exchange port into the receiving cavity and (b) flowing a designated volume of the second liquid through the exchange port into the assay reservoir. The system also includes a fluidic system that is in flow communication with the liquid-exchange assembly.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 10, 2015
    Applicant: ILLUMINA, INC.
    Inventors: Dale Buermann, Sebastian Bohm, Alexander Hsiao
  • Patent number: 9193996
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 24, 2015
    Assignee: Illumina, Inc.
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Patent number: 9139875
    Abstract: An optical system configured to detect optical signals during imaging sessions. The optical system includes an objective lens that has a collecting end that is positioned proximate to a sample and configured to receive optical signals therefrom. The optical system also includes a removable path compensator that is configured to be located at an imaging position between the collecting end of the objective lens and the sample. The path compensator adjusts an optical path of the light emissions when in the imaging position. Also, the optical system includes a transfer device that is configured to move the path compensator. The transfer device locates the path compensator at the imaging position for a first imaging session and removes the path compensator from the imaging position for a second imaging session.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 22, 2015
    Assignee: Illumina, Inc.
    Inventors: Alexander Triener, Erik Allegoren, Wenyi Feng, Dale Buermann, Erik Olson, James Osmus
  • Publication number: 20150252416
    Abstract: A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
    Inventors: Wenyi Feng, Jason Bryant, Dale Buermann
  • Patent number: 9068220
    Abstract: A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 30, 2015
    Assignee: ILLUMINA, INC.
    Inventors: Wenyi Feng, Jason Bryant, Dale Buermann