Patents by Inventor Damon B. Farmer

Damon B. Farmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10665799
    Abstract: A method for manufacturing a semiconductor device includes forming a first dielectric layer on a substrate, forming a carbon nanotube (CNT) layer on the first dielectric layer, forming a second dielectric layer on the carbon nanotube (CNT) layer, patterning a plurality of trenches in the second dielectric layer exposing corresponding portions of the carbon nanotube (CNT) layer, forming a plurality of contacts respectively in the plurality of trenches on the exposed portions of the carbon nanotube (CNT) layer, performing a thermal annealing process to create end-bonds between the plurality of the contacts and the carbon nanotube (CNT) layer, and depositing a passivation layer on the plurality of the contacts and the second dielectric layer.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Shu-Jen Han, Jianshi Tang
  • Publication number: 20200141897
    Abstract: A FET-based CO2 sensor is provided in which the conducting channel of the FET device is coated with a chemical compound that has a high degree of CO2 selectivity and reversibility.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 7, 2020
    Inventors: Bharat Kumar, Damon B. Farmer
  • Patent number: 10613027
    Abstract: Techniques for forming nanoribbon or bulk graphene-based SPR sensors are provided. In one aspect, a method of forming a graphene-based SPR sensor is provided which includes the steps of: depositing graphene onto a substrate, wherein the substrate comprises a dielectric layer on a conductive layer, and wherein the graphene is deposited onto the dielectric layer; and patterning the graphene into multiple, evenly spaced graphene strips, wherein each of the graphene strips has a width of from about 50 nanometers to about 5 micrometers, and ranges therebetween, and wherein the graphene strips are separated from one another by a distance of from about 5 nanometers to about 50 micrometers, and ranges therebetween. Alternatively, bulk graphene may be employed and the dielectric layer is used to form periodic regions of differing permittivity. A testing apparatus and method of analyzing a sample using the present SPR sensors are also provided.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Damon B. Farmer, Yilei Li, Hugen Yan
  • Publication number: 20200083535
    Abstract: Batteries include an anode, an electrolyte having a high solubility for lithium ions and oxygen, and a cathode formed on a substrate. Lithium ions migrate from the anode through the electrolyte to form Li2O2 at a surface of the cathode. A current collector positioned in the electrolyte, the electrolyte separating the anode from the cathode.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Esin Akca, Cagla Akgun, Gokhan Demirci, Damon B. Farmer, Shu-Jen Han, Hareem T. Maune, Dahyun Oh
  • Publication number: 20200083534
    Abstract: Methods of forming a battery include forming a thin graphene cathode on a substrate. A lithium anode is formed and an electrolyte is formed between the thin graphene cathode and the lithium anode.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Esin Akca, Cagla Akgun, Gokhan Demirci, Damon B. Farmer, Shu-Jen Han, Hareem T. Maune, Dahyun Oh
  • Patent number: 10585060
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measureable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measureable electrical parameter to computer elements.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Patent number: 10566623
    Abstract: Batteries and methods of forming the same include a lithium anode, an electrolyte having a high solubility for lithium ions and oxygen, and a thin graphene cathode formed on a substrate. Lithium ions migrate from the lithium anode through the electrolyte to form Li2O2 at a surface of the thin graphene cathode.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 18, 2020
    Assignees: ASELSAN ELEKTRONIK SANAYI VE TICARET A.S, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Esin Akca, Cagla Akgun, Gokhan Demirci, Damon B. Farmer, Shu-Jen Han, Hareem T. Maune, Dahyun Oh
  • Patent number: 10564097
    Abstract: Techniques for forming nanoribbon or bulk graphene-based SPR sensors are provided. In one aspect, a method of forming a graphene-based SPR sensor is provided which includes the steps of: depositing graphene onto a substrate, wherein the substrate comprises a dielectric layer on a conductive layer, and wherein the graphene is deposited onto the dielectric layer; and patterning the graphene into multiple, evenly spaced graphene strips, wherein each of the graphene strips has a width of from about 50 nanometers to about 5 micrometers, and ranges therebetween, and wherein the graphene strips are separated from one another by a distance of from about 5 nanometers to about 50 micrometers, and ranges therebetween. Alternatively, bulk graphene may be employed and the dielectric layer is used to form periodic regions of differing permittivity. A testing apparatus and method of analyzing a sample using the present SPR sensors are also provided.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Damon B. Farmer, Yilei Li, Hugen Yan
  • Publication number: 20200041409
    Abstract: Differential, plasmonic, non-dispersive infrared gas sensors are provided. In one aspect, a gas sensor includes: a plasmonic resonance detector including a differential plasmon resonator array that is resonant at different wavelengths of light; and a light source incident on the plasmonic resonance detector. The differential plasmon resonator array can include: at least one first set of plasmonic resonators interwoven with at least one second set of plasmonic resonators, wherein the at least one first set of plasmonic resonators is configured to be resonant with light at a first wavelength, and wherein the at least one second set of plasmonic resonators is configured to be resonant with light at a second wavelength. A method for analyzing a target gas and a method for forming a plasmonic resonance detector are also provided.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Abram L. Falk, Damon B. Farmer, Shu-Jen Han
  • Publication number: 20200006690
    Abstract: A semiconductor device includes a ribbon of a thickness and a width. A material of the ribbon is configured to host excitons as well as plasmons, and the width is an inverse function of a wavector value at which an energy level of plasmons in the material substantially equals an energy level of excitons in the material. The substantially equal energies of the plasmons and the excitons in the ribbon cause an excitation of intrinsic plasmon-exciton polaritons (IPEPs) in the ribbon. A first contact electrically couples to a first location on the ribbon, and a second contact electrically couples to a second location on the ribbon.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: International Business Machines Corporation
    Inventors: Abram L. Falk, Damon B. Farmer
  • Patent number: 10481090
    Abstract: Differential, plasmonic, non-dispersive infrared gas sensors are provided. In one aspect, a gas sensor includes: a plasmonic resonance detector including a differential plasmon resonator array that is resonant at different wavelengths of light; and a light source incident on the plasmonic resonance detector. The differential plasmon resonator array can include: at least one first set of plasmonic resonators interwoven with at least one second set of plasmonic resonators, wherein the at least one first set of plasmonic resonators is configured to be resonant with light at a first wavelength, and wherein the at least one second set of plasmonic resonators is configured to be resonant with light at a second wavelength. A method for analyzing a target gas and a method for forming a plasmonic resonance detector are also provided.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: November 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Abram L. Falk, Damon B. Farmer, Shu-Jen Han
  • Publication number: 20190296158
    Abstract: Photodetectors and methods of forming the same include a first electrode. A carbon nanotube film is formed on the first electrode. A first graphene sheet is formed on the carbon nanotube film. A second graphene sheet is configured to exert an electrical field on the first graphene sheet that changes an electrical property of the first graphene sheet.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Abram L. Falk, Kuan-Chang Chiu, Damon B. Farmer, Shu-Jen Han
  • Publication number: 20190277761
    Abstract: Differential, plasmonic, non-dispersive infrared gas sensors are provided. In one aspect, a gas sensor includes: a plasmonic resonance detector including a differential plasmon resonator array that is resonant at different wavelengths of light; and a light source incident on the plasmonic resonance detector. The differential plasmon resonator array can include: at least one first set of plasmonic resonators interwoven with at least one second set of plasmonic resonators, wherein the at least one first set of plasmonic resonators is configured to be resonant with light at a first wavelength, and wherein the at least one second set of plasmonic resonators is configured to be resonant with light at a second wavelength. A method for analyzing a target gas and a method for forming a plasmonic resonance detector are also provided.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 12, 2019
    Inventors: Abram L. Falk, Damon B. Farmer, Shu-Jen Han
  • Publication number: 20190248654
    Abstract: A membrane is electrically charged to a polarity. A surface of carbon nanotubes (CNTs) in a solution is caused to acquire a charge of the polarity. The solution is filtered through the membrane. An electromagnetic repulsion between the membrane of the polarity and the CNTs of the polarity causes the CNTs to spontaneously align to form a crystalline structure.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 15, 2019
    Applicant: International Business Machines Corporation
    Inventors: Abram L. Falk, Damon B. Farmer, Lynne M. Gignac
  • Patent number: 10374163
    Abstract: A field effect transistor includes a carbon nanotube layer formed adjacent to a gate structure. Two intermetallic contacts are formed on the carbon nanotube layer. The two intermetallic contacts include an oxidation resistant compound having a work function below about 4.4 electron-volts.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Matthew W. Copel, Damon B. Farmer, Talia S. Gershon, Paul M. Solomon
  • Publication number: 20190234800
    Abstract: A computer-implemented method of forming a thermal-based electronic image of an object that includes receiving electromagnetic radiation emitted by the object at an optically sensitive layer including a superpixel having a plurality of pixels. Each pixel of the plurality of pixels includes a plasmonic absorber having a characteristic resonance wavelength and that generates a radiance measurement of the electromagnetic radiation at its characteristic resonance wavelength. The method further provides for determining, at a processor, an emissivity and temperature for the electromagnetic radiation received at the superpixel using the radiance measurements obtained at the pixels of the superpixel. In addition, the method provides for forming an image of the object from the determined emissivity and temperature.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Ali Afzali-Ardakani, Abram L. Falk, Damon B. Farmer, Shu-Jen Han, George S. Tulevski
  • Publication number: 20190234801
    Abstract: A computer-eimplemented thermal imaging device having an optically-sensitive layer that includes a superpixel having at least one pixel. The at least one pixel includes a plasmonic absorber configured to obtain radiance measurements of electromagnetic radiation emitted from an object at a plurality of wavelengths. The device further includes a processor configured to determine an emissivity and temperature for the electromagnetic radiation received at the plasmonic material from the object using the radiance measurements and to form an image of the object from the determined emissivity and temperature.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Ali Afzali-Ardakani, Abram L. Falk, Damon B. Farmer, Shu-Jen Han, George S. Tulevski
  • Patent number: 10367075
    Abstract: A method of restricting diffusion of miscible materials across a barrier, including, forming a 2-dimensional material on a substrate surface, wherein the 2-dimensional material includes one or more defects through which a portion of the substrate surface is exposed, forming a plug selectively on the exposed substrate surface, and forming a cover layer on the plug and 2-dimensional material, wherein the cover layer material is miscible in the substrate material.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: July 30, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Priscilla D. Antunez, Damon B. Farmer
  • Patent number: 10340459
    Abstract: Detectors and methods of forming the same include aligning a semiconducting carbon nanotubes on a substrate in parallel to form a nanotube layer. The aligned semiconducting carbon nanotubes in the nanotube layer are cut to a uniform length corresponding to a detection frequency. Metal contacts are formed at opposite ends of the nanotube layer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Abram L. Falk, Damon B. Farmer, Shu-Jen Han
  • Publication number: 20190137392
    Abstract: A method of forming a chemical sensor includes forming a dielectric layer on an electrode. A carbon nanotube film is deposited on the dielectric layer. The carbon nanotube film is patterned into strips.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Ali Afzali-Ardakani, Abram L. Falk, Damon B. Farmer, Shu-Jen Han, George S. Tulevski